## ANSYS Mechanical 2022R2 新功能介绍

新科益系统与咨询 (上海) 有限公司



## Intuitively designed, integrated and dependable solver technology

V .

2

2 .

B

**Engineering Data** 

lodal

Geometry

Model

Setup

Solution

Results



## New intuitively designed, and customizable toolbar for Add-ons

- ✓ Access multipurpose workflows quickly and efficiently
- ✓ On-Off button for load/unload
- Training content under Ansys Help and Ansys ALH

## Robust workflow improvements of MSUP Harmonic and MSUP Transient

C

Harmonic Response

Engineering Data

Geometry

Model

Setup

Solution

Results

0

- Reduce overall disk space requirement by 4X
- Solver speed performance improvement
- ✓ Data mapping time from structural to acoustics harmonic dropped by 50%

#### Increased exposure of Coupled Field analysis

- Enables easier workflows for sensor design, MEMs devices and actuators
- ✓ ability to model piezoelectric and acoustic degrees of freedom
- Includes a library of commonly used piezoelectric materials used in sensor design



## Table of Contents

- <u>Unified Contact Detection option</u>
- <u>Accurate wear modeling and</u> <u>Fretting Fatigue life prediction</u>
- Toolbar for Add-ons
- <u>MSUP Harmonic and MSUP</u> <u>Transient workflow</u>
- Exposure of Hybrid Parallel
- <u>Coupled Field analysis exposure</u>
- <u>Hyper viscoelastic materials in</u> <u>Linear Perturbation</u>

- Support for AMD GPUs
- Default number of cores
- **SMART enhancements**
- <u>Composite post-processing</u> <u>functionalities</u>
- Material Support for the LS-DYNA Solver
- <u>Element embedding workflow</u>
- <u>Co-Simulation of Aqwa, Rigid Dynamics</u> and AeroDyn
- Structural Optimization



#### **New Feature:**

A new unified contact detection option

#### Value Provided:

Improves solution robustness for non-smooth contact applications



## A Unified Contact Detection Method

- A new unified contact detection option (KEYOPT(4)=5) is exposed in 2022R2 (available in Mechanical) which combines three individual contact detection methods together: Gauss point (KEYOPT(4)=0), nodal point (KEYOPT(4)=2), surface projection (KEYOPT(4)=3).
- It adds more contact constraint points at contact interface and results in much less penetration and less mesh sensitivity.
- It robustly solves non-smooth contact problems with different contact scenarios which were generally solved by explicit solvers in the past.







#### **New Feature:**

#### Accurate wear modeling and Fretting Fatigue life prediction

#### **Value Provided:**

Automatically scales the wear process so that a few simulation cycles can represent several hundred real cycles, thus enabling accurate prediction of fretting fatigue life



#### Automatic Wear Scaling-Fretting Fatigue

- Wear & Fretting fatigue are slow processes- simulation for the whole process is prohibitively expensive
- New feature to automatically scale the wear to simulate large number of cycles
- Accurate Wear modeling + nCode=Accurate fretting life prediction

| Applied                      |                    | With wear                    |                             |                               | Without wear    |                              |                             |  |
|------------------------------|--------------------|------------------------------|-----------------------------|-------------------------------|-----------------|------------------------------|-----------------------------|--|
| sliding<br>amplitude<br>(mm) | Physical<br>cycles | Calculated<br>life (repeats) | Calculated<br>life (cycles) | Experimental<br>life (cycles) | Physical cycles | Calculated<br>life (repeats) | Calculated<br>life (cycles) |  |
| 0.184                        | 1,385              | 30.08                        | 41,661                      | 43,983                        | 6               | 2,398                        | 14,388                      |  |
| 0.147                        | 1,485              | 27.22                        | 10,422                      | 37,717                        | 6               | 2,278                        | 13,688                      |  |
| 0.073                        | 1,888              | 20.71                        | 39,100                      | 28,800                        | 6               | 2,972                        | 17,832                      |  |

Life prediction with new autoscaling + nCode match experiments –both qualitatively (wear increases fretting life as see in experiments) and quantitatively





Automatic scaling enables-6 simulation cycles = 1385 real cycles



#### **New Feature:**

New Toolbar for Ansys Mechanical Add-ons

#### Value Provided:

- Access multipurpose workflows quickly and efficiently
- On-Off button for load/unload
- Training content under Ansys Help and Ansys ALH



#### Ansys Mechanical Add-ons : Value Messaging

**Owned, Developed and Managed by Ansys** 

Part of installation package of Ansys Mechanical Product/Application

Aligned with targeted Industry or application requirements



#### Ansys Mechanical Add-ons : 2022 R2 – Enhancements

Easy access & Intuitive design

**Available under Ansys Mechanical Toolbar** 

Not loaded by default

**On-Off button for load/unload** 

Sufficient training content under Ansys Help and Ansys ALH

Usage/Popularity can be tracked under APIP Program

**License controlled** 



#### Ansys Mechanical Add-ons : 2022 R2 – 14 Different Add-ons

| Fatigue                | DesignLife<br>Fatique | NVH<br>Toolkit<br>NVH | Forced<br>Response<br>Turbomachinerr | Drop<br>Test<br>Explicit | Bolt Statistics on<br>Tools Structures<br>Mechanical Toolkit | Hydrodynamic Offshore<br>Pressure<br>Hydrodynamic ! oads | LPBF DED Sintering Distorti<br>Process Process Process Compensa<br>Additive Manufacturing | on<br>ation Rigid Dynamics                                           |
|------------------------|-----------------------|-----------------------|--------------------------------------|--------------------------|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| NVH                    | DesignLife<br>Fatigue | NVH<br>Toolkit<br>NVH |                                      |                          |                                                              |                                                          |                                                                                           | on<br>ation Variable Motion Load<br>Load Transfer<br>Rigid Dynamics  |
| Turbomachinery         | DesignLife<br>Fatigue | NVH<br>Toolkit<br>NVH | Forced<br>Response<br>Turbomachinery | Drop<br>Test<br>Explicit | Bolt Statistics on<br>Tools Structures<br>Mechanical Toolkit | Hydrodynamic Offshore<br>Pressure<br>Hydrodynamic Loads  | LPBF DED Sintering Distorti<br>Process Process Compensi<br>Additive Manufacturing         | on<br>ation Variable Motion Load<br>Load Transfer<br>Rigid Dynamics  |
| Explicit               | DesignLife<br>Fatigue | NVH<br>Toolkit<br>NVH | Forced<br>Response<br>Turbomachinery | Drop<br>Test<br>Explicit | Bolt Statistics on<br>Tools Structures<br>Mechanical Toolkit | Hydrodynamic Offshore<br>Pressure<br>Hydrodynamic Loads  | LPBF DED Sintering Distorti<br>Process Process Compense<br>Additive Manufacturing         | on<br>ation Variable Motion Load<br>Load Transfer<br>Rigid Dynamics  |
| Mechanical Toolkit     | DesignLife<br>Fatigue | NVH<br>Toolkit<br>NVH | Forced<br>Response<br>Turbomachinery | Drop<br>Test<br>Explicit | Bolt Statistics on<br>Tools Structures<br>Mechanical Toolkit | Hydrodynamic Offshore<br>Pressure<br>Hydrodynamic Loads  | LPBF DED Sintering Distorti<br>Process Process Compensi<br>Additive Manufacturing         | on<br>ation Variable Motion Load<br>Load Transfer<br>Rigid Dynamics  |
| Hydrodynamic Loads     | DesignLife<br>Fatigue | NVH<br>Toolkit<br>NVH | Forced<br>Response<br>Turbomachinery | Drop<br>Test<br>Explicit | Bolt Statistics on<br>Tools Structures<br>Mechanical Toolkit | Hydrodynamic Offshore<br>Pressure<br>Hydrodynamic Loads  | LPBF DED Sintering Distorti<br>Process Process Compens<br>Additive Manufacturing          | ion<br>ation Variable Motion Load<br>Load Transfer<br>Rigid Dynamics |
| Additive Manufacturing | DesignLife<br>Fatigue | NVH<br>Toolkit<br>NVH | Forced<br>Response<br>Turbomachinery | Drop<br>Test<br>Explicit | Bolt Statistics on<br>Tools Structures<br>Mechanical Toolkit | Hydrodynamic Offshore<br>Pressure<br>Hydrodynamic Loads  | LPBF DED Sintering Distortion<br>Process Process Process Compensation                     | n<br>ion n<br>Kigid Dynamics                                         |
| Rigid Dynamics         | DesignLife<br>Fatigue | NVH<br>Toolkit<br>NVH | Forced<br>Response<br>Turbomachinery | Drop<br>Test<br>Explicit | Bolt Statistics on<br>Tools Structures<br>Mechanical Toolkit | Hydrodynamic Offshore<br>Pressure<br>Hydrodynamic Loads  | LPBF DED Sintering Distorti<br>Process Process Compense<br>Additive Manufacturing         | on<br>Variable Motion Load<br>Load Transfer<br>Rigid Dynamics        |



#### Ansys Mechanical Add-ons : 2022 R2 – Design





#### **NVH Toolkit Add-on**



## NVH Toolkit Add-on: MAC UI enhancements

- Addition of the 3D MAC Table.
- Added support for rst-rst file comparison without model rotation. This option is enabled to identify
  modal changes in computational models if design changes are introduced (e.g. change in the
  materials, mesh, contact hypotheses...), but not changes in terms of global positioning. The rest of the
  MAC Calculator functionalities continue to be applicable.
- Mode Preview implemented in the Frequency Worksheet to be able to animate modes before solving the MAC Calculator.



| - | File 1 Options                    |                                              |  |  |  |  |  |
|---|-----------------------------------|----------------------------------------------|--|--|--|--|--|
|   | File Type                         | rst                                          |  |  |  |  |  |
|   | File                              | D:\simple\simple_files\dp0\SYS\MECH\file.rst |  |  |  |  |  |
| - | File 2 Options                    |                                              |  |  |  |  |  |
|   | File Type                         | rst                                          |  |  |  |  |  |
|   | File                              | D:\simple\simple_files\dp0\SYS\MECH\MA       |  |  |  |  |  |
| 3 | MAC Calculation Options           |                                              |  |  |  |  |  |
| Ì | Node Matching Absolute Tolera     | 0.01 m                                       |  |  |  |  |  |
|   | Nearest Node match                | Yes                                          |  |  |  |  |  |
|   | Restrict to Nodal Named Selection | No                                           |  |  |  |  |  |
|   | Degrees of Freedom                | All Structural DOFs                          |  |  |  |  |  |
| 3 | Mode Pairing Options              |                                              |  |  |  |  |  |
|   | Pair Modes                        | No                                           |  |  |  |  |  |
|   | MAC Limit                         | 0.9                                          |  |  |  |  |  |
|   | Frequency Tolerances              | Program Controlled                           |  |  |  |  |  |
| ] | Optimization Result               |                                              |  |  |  |  |  |
|   | Alpha (Frequency term)            | 1                                            |  |  |  |  |  |
|   | Objective Function (f)            | 0.0000E+00                                   |  |  |  |  |  |
|   |                                   |                                              |  |  |  |  |  |





## NVH Toolkit Add-on: COMAC Calculation

• Coordinate Modal Assurance Criterion (COMAC) has been added as an additional output of MAC. COMAC is computed for each pair of matched Degrees of Freedom

| Nodes (File 1) | Nodes (File 2) | COMAC (UX) | COMAC (UY) | COMAC (UZ) |  |
|----------------|----------------|------------|------------|------------|--|
| 169            | 6              | 0.0828     | 0.5126     | 0.0194     |  |
| 173            | 7              | 0.0438     | 0.5114     | 0.0117     |  |
| 180            | 3              | 0.0461     | 0.5114     | 0.0124     |  |
| 184            | 2              | 0.0871     | 0.5126     | 0.0232     |  |
| 188            | 1              | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |  |
| 194            | 5              | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 |  |
| 195            | 8              | 0.0733     | 0.2718     | 7.9320E-03 |  |
| 201            | 4              | 0.0686     | 0.2718     | 7.8081E-03 |  |
|                |                |            |            |            |  |

- As MAC, COMAC is bounded between 0 and 1.
- With COMAC, users can identify the potential sources of low MAC (associated with DOF pairs with low COMAC) or the reasons for a high MAC (DOF pairs with high COMAC).



## NVH Toolkit Add-on: FRF Calculator

• The Frequency Response Function (FRF) Calculator is a brand-new post object that allows users to compute the relationship between a generalized input force and a generalized output displacement as a function of frequency:





#### NVH Toolkit Add-on: FRF Calculator, connection with UNV data

- UNV Data has been incorporated into the FRF Calculator to be able to analyze experimental FRFs and compare them with computational FRFs.
- Fully defined model orientation is available (by Coordinate System, Rigid Body Transformation or 3 Node Alignment).

| FRF Definiton      |                           |                  |                    |                     |       | 0            | 000        | 0.050        | 0.10      | 1(m)               | X                                                                                                              |
|--------------------|---------------------------|------------------|--------------------|---------------------|-------|--------------|------------|--------------|-----------|--------------------|----------------------------------------------------------------------------------------------------------------|
| Frequency Minimum  | 0 Hz                      |                  |                    |                     |       |              |            |              |           |                    |                                                                                                                |
| Frequency Maximum  | 2000 Hz                   | 1                |                    |                     |       |              | 0.025      |              | 0.075     |                    |                                                                                                                |
| Frequency Interval | 1 Hz                      | provide a second |                    |                     |       |              |            |              |           |                    | the second s |
| Nodes Definition   | Manual                    | FRF Works        | sheet              |                     |       |              |            |              |           |                    | <b>▼</b> # □                                                                                                   |
| UNV Data           |                           | al               |                    |                     | -     |              | -          |              |           |                    |                                                                                                                |
| include UNV Data   | Yes                       |                  |                    |                     | 422 4 |              | HH I       |              |           |                    |                                                                                                                |
| ile Type           | unv                       | Lise in FR       | E Damoed Fred (Hz) | Dampine A           | Show  | Output Node  | Dutrut DOF | Innut Node   | Innut DOF | Name               |                                                                                                                |
| Inits              | Dataset 164 (UNV File)    |                  | 627.40             | 2.00                |       | 216269       | IN         | 222491       | F7        | (M2162691/67212    |                                                                                                                |
| ile                | D:\\\FR                   |                  | 639.19             | 2.00                |       | 272047       | 117        | 272099       | FY        | 1/7/272047//EV/2   |                                                                                                                |
| Orient By          | Rigid Body Transformation |                  | 869.49             | 200                 |       | 69012        | LIZ.       | 272099       | FY        | LIZI690121/FY127   |                                                                                                                |
| Translation        | 0.097 m                   |                  | 876.18             | 2.00                |       | 461402       | LIY.       | 272099       | FY        | LIV14614020FY12    |                                                                                                                |
| Translation        | 0.179 m                   |                  | 1589.17            | 2.00                | -     | 101102       |            | 212000       |           | o reconcept recent |                                                                                                                |
| Z Translation      | -0.001 m                  |                  | 1589.43            | 2.00                |       |              |            |              |           |                    |                                                                                                                |
| Rotation X Axis    | 0                         |                  | 1664.91            | 2.00                |       |              |            |              |           |                    |                                                                                                                |
| Rotation Y Axis    | 0                         |                  | 1684.89            | 2.00                |       |              |            |              |           |                    |                                                                                                                |
| Rotation Z Axis    | 1                         |                  | 1685.69            | 2.00                |       |              |            |              |           |                    |                                                                                                                |
| Rotation Angle     | 90 *                      |                  | 1827.21            | 2.00                |       |              |            |              |           |                    |                                                                                                                |
|                    | 18103                     |                  | 1959.54            | 2.00                |       |              |            |              |           |                    |                                                                                                                |
|                    |                           |                  | 2067.91            | 2.00                | _     |              |            |              | 44        |                    |                                                                                                                |
|                    |                           |                  | 2068.52            | 2.00                | Chan  | Outrust Made | Outrue DOE | Jamest Manda | Inna DOF  | Mama               |                                                                                                                |
|                    |                           |                  | 2119.72            | 2.00                | STROW | E 40         | OupurDor   | Input Node   | Input Dor | I TRE 40 ID ARCON  | ^^                                                                                                             |
|                    |                           |                  | 2168.96            | 2.00                |       | 543          | 02         | 560          | FT        | U2(549/FT(560)     |                                                                                                                |
|                    |                           |                  | 2190.78            | 2.00                | H     | 54/          | 02         | 560          | PT .      | U2(547)/FT(560)    |                                                                                                                |
|                    |                           |                  | 2194.81            | 2.00                | H     | 546          | 02         | 000          | FT N      | U2(548)/F1(560)    |                                                                                                                |
|                    |                           |                  | 2194.82            | 2.00                | H     | 545          | 02         | 060          | FT        | U2(545)/F1(560)    |                                                                                                                |
|                    |                           |                  | 2279.58            | 2.00                | H     | 10           | UX UX      | 560          | FT        | 03(10)/FT(560)     |                                                                                                                |
|                    |                           |                  | 2280.02            | 2.00                | H     | 61           | UY         | 560          | FY        | 01(61)/11(500)     |                                                                                                                |
|                    |                           |                  | 2282.43            | 2.00                |       | 71           | UT         | 560          | FY        | 01(/1/+1(560)      |                                                                                                                |
|                    |                           |                  | 2335.70            | 2.00                |       | 543          | 02         | 560          | FY        | 02(543/17(560)     |                                                                                                                |
|                    |                           |                  | 2384.49            | 2.00                | H     | 544          | 02         | 560          | FY        | UZ[544//FY[560]    |                                                                                                                |
|                    |                           |                  | 2408.93            | 2.00                | H     | 546          | 02         | 560          | FY        | 02(546)/17(560)    |                                                                                                                |
|                    |                           | ~                | 2102.01            | <b>````````</b> ``` | H     | 550          | 02         | 560          | FT        | 02(550)/FT(560)    |                                                                                                                |



## NVH Toolkit Add-on: FRAC Calculator

- A Frequency Response Assurance Criterion (FRAC) Calculator has been incorporated into the FRF Calculator as an additional tool to measure correlation between FRFs.
- FRAC can be computed between two computational FRFs or between a computational and a experimental FRF.
- An automatic algorithm that matches node pairs between the experimental and computational models has been implemented, and users are be able to quickly compare the same FRFs in both models.



#### 1#1

| Show | FRF1                   | FRF2                  | Name        | FRAC       |  |
|------|------------------------|-----------------------|-------------|------------|--|
| ~    | UY[216268]/FZ[233491]  | UZ(543)/FY(560) (unv) | FRAC_PAIR_1 | 0.0124     |  |
| ~    | UZ(272047)/FY(272099)  | UZ(549)/FY(560) (unv) | FRAC_PAIR_2 | 5.3934E-03 |  |
|      | UZ(69012)/FY(272099) ( | UZ(543)/FY(560) (unv) | FRAC_PAIR_3 | 0.0339     |  |
|      | UY(461402)/FY(272099)  | UY(21)/FY(560) (unv)  | FRAC_PAIR_4 | 0.0569     |  |
|      |                        |                       |             |            |  |
|      |                        |                       |             |            |  |
|      |                        |                       |             |            |  |
|      |                        |                       |             |            |  |
|      |                        |                       |             |            |  |
|      |                        |                       |             |            |  |
|      |                        |                       |             |            |  |
|      |                        |                       |             |            |  |



#### **Forced Response Add-on**



## Forced Response Add-on

- The Forced Response Tool provides a comprehensive way of investigating the aeromechanics and reliability of turbomachinery blade rows.
- In conjunction with Ansys Computational Fluid Dynamics (CFD) tools, the Forced Response Tool accurately predicts the structural vibrations of industrial components. Advanced physical phenomena such as airfoil aeroelasticity, flutter, deterministic and probabilistic mistuning, as well as an array of loading and boundary conditions can be modeled and studied.
- Efficient high-fidelity modeling is achieved using a combination of core technologies such as cyclic symmetry, mode-superposition, and innovative techniques to model mistuning and aeroelasticity in a reduced space.
- This tool provides an intuitive, reliable, and efficient way to simulate turbomachinery blade rows.





## **DesignLife Add-on**



## DesignLife Add-on: Analysis from Mechanical

• Ability to insert the DesignLife analysis directly from Mechanical.





## DesignLife Add-on: Harmonic Direct – Vibration Fatigue

| Vibration Fatigue Load                                                                              | Stress       | Strain       | Shell Seam<br>Weld | Solid Seam<br>Weld |
|-----------------------------------------------------------------------------------------------------|--------------|--------------|--------------------|--------------------|
| PSD Loading, Including:<br>- Static Offset Case<br>- Single and Multiple Events                     | $\checkmark$ | $\checkmark$ | $\checkmark$       | $\checkmark$       |
| <u>Single Frequency Loading, Including:</u><br>- Static Offset Case<br>- Single and Multiple Events | $\checkmark$ | $\checkmark$ | $\checkmark$       | $\checkmark$       |
| <u>Frequency Range Loading, Including:</u><br>- Static Offset Case<br>- Single and Multiple Events  | $\checkmark$ | $\checkmark$ | $\checkmark$       | $\checkmark$       |
| <u>Sine On Random Loading, Including:</u><br>- Static Offset Case<br>- Single and Multiple Events   | $\checkmark$ | $\checkmark$ | $\checkmark$       | $\checkmark$       |



## Single Frequency Vibration Load – Stress Case

• Life Result Comparison between DesignLife Add-on and Standalone:



#### DesignLife Add-on







#### DesignLife Add-on: Expose Static (Preload) Option within Time Series

- In order to define the static load case (preload)
  - Set the "Static" option to "Yes".
  - Then the input file selection will not be required.

•This sets the Static State to "Yes" or "No" within the command SetLoadCaseStaticState inside the input.dcl.

•For clarity, the name of the load will be updated to include (Static) specification.

| Definition         Environment       Static Structural         Define By       Time         Time       1.0         Scale Factor       1         Static       No         Input File Definition       Absolute Path         Input File       View Time Series Plot         View Time Series Plot       No         Image: Constraint of the Series Plot       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D | Details of "Time Series Load" 👻 🕈 🗖 🗙                                                                                             |                              |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|
| Environment       Static Structural         Define By       Time         Time       1.0         Scale Factor       1         Static       No         Input File Definition       Absolute Path         Input File       View Time Series Plot         View Time Series Plot       No         Imput File       View Time Series Plot         Imput File       View Time Series Load (Static)         Imput File       View Time Series Load (Static)         Imput File       View Time Series Load (Static)         Imput File       Solution Information         Details of "Time Series Load (Static)"       Imput File         Imput File       Solution Information         Definition       Environment       Static Structural         Define By       Time         Time       1.0       Scale Factor         Scale Factor       1         Static       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Definition                                                                                                                        |                              |  |  |  |  |
| Define By Time   Time 1.0   Scale Factor 1   Static No   Input File Definition Absolute Path   Input File View Time Series Plot   View Time Series Plot No     Imput File View Time Series Plot   View Time Series Plot No     Imput File View Time Series Plot   View Time Series Plot No     Imput File View Time Series Plot   View Time Series Load (Batic) Imput File   Imput File View Time Series Load (Static)   Imput File View Time Series Load (Static)   Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Imput File View Time Series Load (Static)     Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | Environment                                                                                                                       | Static Structural            |  |  |  |  |
| Time 1.0   Scale Factor 1   Static No   Input File Definition Absolute Path Input File View Time Series Plot No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Define By                                                                                                                         | Time                         |  |  |  |  |
| Scale Factor 1   Static No   Input File Definition Input File View Time Series Plot No       Imput File   View Time Series Plot   No     Imput File   View Time Series Plot   No     Imput File   View Time Series Plot   No     Imput File   View Time Series Plot   No     Imput File   View Time Series Plot   No     Imput File   View Time Series Load (Static)   Imput File   Imput File     Imput File   View Time Series Load (Static)   Imput File   Impu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | Time                                                                                                                              | 1.0                          |  |  |  |  |
| Static No   Input File Definition Absolute Path   Input File View Time Series Plot   View Time Series Plot No     Image: Solution Group   Image: Solution Information     Detinition   Image: Environment   Static Structural   Define By   Time   Time   Time   Time   Time   Static   Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | Scale Factor 1                                                                                                                    |                              |  |  |  |  |
| Input File Definition Absolute Path   Input File View Time Series Plot   View Time Series Plot No     Imput File No     Imput F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 | Static No                                                                                                                         |                              |  |  |  |  |
| Input File         View Time Series Plot         No             Image: Solution Group         Image: Solution Information             Definition         Environment       Static Structural         Define By       Time         Time       1.0         Scale Factor       1         Static       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Input File Definiti                                                                                                               | on Absolute Path             |  |  |  |  |
| View Time Series Plot     No     Image: Contract of the series load (Static)     Image: Contract of the series load (Static) <t< th=""><th></th><th>Input File</th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | Input File                                                                                                                        |                              |  |  |  |  |
| Image: Control of the con |   | View Time Series F                                                                                                                | Plot No                      |  |  |  |  |
| Details of "Time Series Load (Static)"       ✓       ↓       ↓         □       Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Solution Group<br>Load Mapper<br>Loading Event<br>Time Series Load (Static)<br>Materials<br>Solution (B6)<br>Solution Information |                              |  |  |  |  |
| □ Definition         Environment       Static Structural         Define By       Time         Time       1.0         □ Scale Factor       1         Static       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D | etails of "Time Se                                                                                                                | eries Load (Static)" 👻 🕂 🗆 🗙 |  |  |  |  |
| Environment       Static Structural         Define By       Time         Time       1.0         Scale Factor       1         Static       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - | Definition                                                                                                                        |                              |  |  |  |  |
| Define By     Time       Time     1.0       Scale Factor     1       Static     Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | Environment Static Structural                                                                                                     |                              |  |  |  |  |
| Time     1.0       Scale Factor     1       Static     Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | Define By                                                                                                                         | Time                         |  |  |  |  |
| Scale Factor 1     Static Yes ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Time                                                                                                                              | 1.0                          |  |  |  |  |
| Static Yes 🔻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | Scale Factor                                                                                                                      | 1                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Static                                                                                                                            | Yes 🔻                        |  |  |  |  |



#### DesignLife Add-on: Time Series Input File (Absolute or Relative Path)

- Input File Definition:
  - Choose between "Absolute Path" or "Relative Path".
- If "Absolute Path" is used
  - The time series file will be loaded from the path selected in your local device. This means if the file is moved to a different place, the time series input file will no longer be found.
- If "Relative Path" is used
  - The local file selected will be copied to the user\_files folder within the project folder. Instead of loading the file from the local path, it will load it from the user\_files. So make sure, if you modify the local file, and you want your project to reflect so, to reload it again so that its updated into the user\_files.

| Definition                    | Definition                                                                    |  |  |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|
| Environment Static Structural |                                                                               |  |  |  |  |  |  |
| Define By                     | Time                                                                          |  |  |  |  |  |  |
| Time                          | 1.0                                                                           |  |  |  |  |  |  |
| Scale Factor                  | 1                                                                             |  |  |  |  |  |  |
| Static                        | No                                                                            |  |  |  |  |  |  |
| Input File Definition         | Absolute Path                                                                 |  |  |  |  |  |  |
| Input File                    | D:\Git_Repo\Parts\POST_Parts\ncode\NCODE_DESIGN_LIFE_APP_035\smallhistory.dat |  |  |  |  |  |  |
| View Time Series Plot         | No                                                                            |  |  |  |  |  |  |

| Static Structural             |
|-------------------------------|
| Static Structural             |
| Time                          |
| 1.0                           |
| 1                             |
| No                            |
| Relative Path                 |
| \\user_files\smallhistory.dat |
| No                            |
|                               |



#### DesignLife Add-on: Post Processing Static Failure

- Life and Damage Results
- For Time Based, Stress-Life Analysis (SN), the Static Failure Damage is set to 1.234e29 in the input.dcl file consumed by nCode solver.
  - SetProperty("SNEngine\_Fatigue",StaticFailureDamage,"1.234E29")
- If Static Failure is detected, Mechanical will issue the warning message 1:
  - <u>Warning message 1:</u> "Calculated alternating stress in some areas exceeded the UTS, which indicates Static Failure. For those areas, Life is set to the Static Failure Life and Damage is set to the Static Failure Damage; plotted as purple contours."



#### Post Processing Static Failure – Life and Damage Result

 The purple band in the legend, corresponding to the "Static Failure Life" or "Static Failure Damage" value, represents all the areas where Static Failure is reported.





#### DesignLife Add-on: Exposed Strain Analysis Parameters

- Geometry
  - Scoping method
  - Geometry
- Definition
  - Based on Material (automatically filled from scoped geometry)
  - Fatigue Type (Strain, read only)
  - Strength Coefficient Parametrizable
  - Strength Exponent Parametrizable
  - Ductility Coefficient Parametrizable
  - Ductility Exponent Parametrizable
  - Cyclic Strain Coefficient Parametrizable
  - Cyclic Strain Hardening Exponent Parametrizable
  - Young's Modulus
  - Poisson's Ratio
  - Tensile Ultimate Strength
  - NCode Material Type:
    - Grey Cast Iron, Nodular Cast Iron, Malleable Cast Iron, Cast Steel, Steel, Aluminum, Cast Aluminum
- Material Parameters
  - Surface Finish:
    - Polished, Ground, Machined, Poor Machined, As Rolled, AsCast.



| D | etails of "Materials Assignment"   | ▼ ₽ □ ×            |  |  |  |  |
|---|------------------------------------|--------------------|--|--|--|--|
| Ξ | Geometry                           |                    |  |  |  |  |
|   | Scoping Method                     | Geometry Selection |  |  |  |  |
|   | Geometry                           | 1 Body             |  |  |  |  |
| - | Definition                         |                    |  |  |  |  |
|   | Based on Material                  | Structural Steel   |  |  |  |  |
|   | Fatigue Type                       | Strain             |  |  |  |  |
|   | P Strength Coefficient             | 50000000 Pa        |  |  |  |  |
|   | P Strength Exponent                | -0.5               |  |  |  |  |
|   | P Ductility Coefficient            | 0.675              |  |  |  |  |
|   | P Ductility Exponent               | -0.2               |  |  |  |  |
|   | P Cyclic Strength Coefficient      | 100000000 Pa       |  |  |  |  |
|   | P Cyclic Strain Hardening Exponent | 0.2                |  |  |  |  |
|   | Young's Modulus                    | 20000000000 Pa     |  |  |  |  |
|   | Poisson's Ratio                    | 0.3                |  |  |  |  |
|   | Tensile Ultimate Strength          | 46000000 Pa        |  |  |  |  |
|   | nCode Material Type                | Steel              |  |  |  |  |
| - | Material Parameters                |                    |  |  |  |  |
|   | Surface Finish                     | Polished           |  |  |  |  |
| - | Export Engineering Data            |                    |  |  |  |  |
|   | Export Engineering Data            | Export             |  |  |  |  |



#### DesignLife Add-on: Exposed Material Parameters

- Material Parameters for SN and EN
  - Surface Finish:
    - Polished, Ground, Machined, Poor Machined, As Rolled, As Cast.
  - Surface Treatment Factor
    - Can be parameterized.
  - User Surface Factor
    - Can be parameterized.

| Details of "Materials Assignment" 👻 🗖 🗖 🗙 |                    |  |  |  |  |
|-------------------------------------------|--------------------|--|--|--|--|
| - Geometry                                |                    |  |  |  |  |
| Scoping Method                            | Geometry Selection |  |  |  |  |
| Geometry                                  |                    |  |  |  |  |
| Definition                                |                    |  |  |  |  |
| Based on Material                         |                    |  |  |  |  |
| Fatigue Type                              | Strain             |  |  |  |  |
| Strength Coefficient                      |                    |  |  |  |  |
| Strength Exponent                         |                    |  |  |  |  |
| Ductility Coefficient                     |                    |  |  |  |  |
| Ductility Exponent                        |                    |  |  |  |  |
| Cyclic Strength Coefficien                | t                  |  |  |  |  |
| Cyclic Strain Hardening Ex                |                    |  |  |  |  |
| Young's Modulus                           |                    |  |  |  |  |
| Poisson's Ratio                           |                    |  |  |  |  |
| Tensile Ultimate Strength                 |                    |  |  |  |  |
| nCode Material Type                       |                    |  |  |  |  |
| Material Parameters                       |                    |  |  |  |  |
| Surface Finish                            | Polished           |  |  |  |  |
| Surface Treatment Factor                  | 1                  |  |  |  |  |
| User Surface Factor                       | 1                  |  |  |  |  |
| Export Engineering Data                   |                    |  |  |  |  |
| Export Engineering Data                   | Export             |  |  |  |  |



#### **New Feature:**

#### Weld Fatigue Workflow

#### Value Provided:

- Out of the box automation to handle complex weld locations
- Use expressions based on parent material thicknesses to drive different industry best practices



## Seam Weld Enhancements

- Handle different complex weld locations with native automation
  - Auto switching of top & bottom faces
  - Back-to-Back welds
  - Handle multiple distinct weld locations part of one weld curve
  - Auto ignore redundant weld curves along thickness
  - Close loop welds
  - Auto retraction &/or squeeze weld &/or HAZ
  - Auto defeaturing



| Туре                           | Continuous Seam              |
|--------------------------------|------------------------------|
| Source                         | Mesh                         |
| Modeled As                     | Normal and Angled            |
| Create Using                   | Curves                       |
| Angled Direction               | Normal                       |
| Use Worksheet                  | No                           |
| Curve Scoping                  | Geometry Selection           |
| Weld Curve                     | 1 Body                       |
| Definition                     |                              |
| Suppressed                     | No                           |
| Adjust Weld Height             | Yes                          |
| Weld Height (Leg02) Assignment | Expression                   |
| Weld Height (Leg02) Expression | (t1+t2)/4                    |
| Creation Criteria              | Width Based                  |
| Weld Width (Leg01) Assignment  | Expression                   |
| Weld Width (Leg01) Expression  | (t1+t2)/4                    |
| Edge Mesh Size                 | Default (3.0 mm)             |
| Create HAZ Layer               | Yes                          |
| HAZ Distance Assignment        | Expression                   |
| HAZ Distance Expression        | (t1+t2)/4                    |
| Number Of HAZ                  | Default (1)                  |
| HAZ Growth Rate                | 1.2                          |
| Generate End-Caps              | Yes                          |
| Generate Named Selection       | No                           |
| Intersection Tag (Beta)        |                              |
| Mechanical Properties          |                              |
| Material                       | Structural Steel             |
| Thickness Assignment           | Expression                   |
| Expression                     | (t1+t2)/2                    |
| Advanced                       |                              |
| Sharp Angle                    | Default (30.0°)              |
| Connection Tolerance           | Default (Program Controlled) |
| Smoothing                      | Yes                          |
| Lap Weld Angle Tolerance       | 5.0°                         |
|                                |                              |

- Use expressions to drive different industry practices
  - Support for expressions
     (-,+,\*,/,(,),^).
    - Available for: Weld Height, Width, HAZ Distance, Thickness





#### **New Feature:**

#### **MSUP Harmonic and MSUP Transient** workflow Performance Improvement

#### Value Provided:

- Reduce overall disk space requirement by 4X
- Solver speed performance improvement
- Data mapping time from structural to acoustics harmonic dropped by 50%



im Modal (A5)

# Needs On Demand Expansion set to Yes in Linked Modal and no loads adding new elements.

√<sub>T=0</sub> Modal (Modal) √<sub>T=0</sub> Pre-Stress (None) VT=0 Modal (Modal) 🗸 🖽 Analysis Settings With MODDIR Analysis Settings Before 🗸 🖽 Analysis Settings 🖓 🔍 Pressure 🔎 Fixed Support 🔎 🔍 🖉 🔎 💭 Remote Force Solution (A6) Remote Force 🖉 📆 Solution Information 🛛 🐻 Solution (B6) ė...., 👼 Solution (C6) unition Information 🗤 🔍 Harmonic Response (B5) 🖉 📊 Solution Information 🗸 🔊 Total Deformation « Direct » 🔊 Total Deformation Analysis Settings Harmonic Response 2 (C5) 🔎 Pressure Applied By Details of "Solution (C6) - 4 □ × Details of "Solution (B6)" Remote Force Solution Solution 🖉 🐻 Solution (B6) Contraction Information Solve Process Settings Number Of Cores to Use (Beta) Solve Process Settings Number Of Cores to Use (Beta) 🖉 Total Deformation Information Information Details of "Analysis Settings' Status Done Status Done MAPDL Elapsed Time 1 m 22 s Options 2 m 47 s MAPDL Elapsed Time Max Modes to Find MAPDL Memory Used 5.2793 GB 6 5.3281 GB MAPDL Memory Used ~40Mb N/A Limit Search to Range No MAPDL Result File Size MAPDL Result File Size 922.13 MB On Demand Expansion Yes Post Processing Post Processing Solver Controls Damped No Number of elements : ~420 000 Number of modes : 6 Solver Type Program Controlled + Rotordynamics Controls



 Reduce results file size and decrease overall time to solve by referencing Modal results files instead of copying them.

⊨ → 10 Harmonic Response 2 (C5)



Transient Structural

↓ ↓ □ ×

< .

.

× .

.

Number of frequencies : 100

<u>10 Harmonic Response (B5)</u>



## Modal & MSUP Elemental Temperature

 Element Temperatures is no longer being requested during solution to be stored in the Modal and Mode-superposition analysis results file, which reduces the result file size

| Details of "Solution (B6)"      |           |
|---------------------------------|-----------|
| + Solution                      |           |
| Adaptive Mesh Refinement        | t         |
| Max Refinement Loops            | 1.        |
| Refinement Depth                | 2.        |
| <ul> <li>Information</li> </ul> |           |
| Status                          | Done      |
| MAPDL Elapsed Time              | 1 m 22 s  |
| MAPDL Memory Used               | 12.111 GB |
| MAPDL Result File Size          | 162.31 MB |

| D | etails of "Solution (B6)" | <b>▼</b> ‡ □ × |
|---|---------------------------|----------------|
| + | Solution                  |                |
| - | Adaptive Mesh Refinement  |                |
|   | Max Refinement Loops      | 1.             |
|   | Refinement Depth          | 2.             |
| - | Information               |                |
|   | Status                    | Done           |
|   | MAPDL Elapsed Time        | 1 m 15 s       |
|   | MAPDL Memory Used         | 12.111 GB      |
| 1 | MAPDL Result File Size    | 119.69 MB      |



#### Reduced disk space with less data stored in results file

• Using On Demand Expansion, by default mode shapes are no more stored in the result file. Postprocessing is done extracting the data from the mode file(s) thus removing duplication of stored data:

| Details of "Solution (B6)" |           | <b>₽</b> □ × |
|----------------------------|-----------|--------------|
| + Solution                 |           |              |
| Adaptive Mesh Refinement   | :         |              |
| Max Refinement Loops       | 1.        |              |
| Refinement Depth           | 2.        |              |
| Information                | 2         |              |
| Status                     | Done      |              |
|                            | 10.111 CP |              |
| MAPDL Memory Used          | 12.111 GB |              |
| MAPDE Result File Size     | 120.06 MB |              |


# Multistage Cyclic Analysis

• Modal and Prestressed Modal analyses now support multiple harmonic indices definition. It allows to improve the accuracy of the results by enriching the solution.

| Stage 1 |                 |      |      |       |       |  |  |
|---------|-----------------|------|------|-------|-------|--|--|
|         | Nodal Diameters |      |      |       |       |  |  |
| HI      | HI              | N-HI | N+HI | 2N-HI | 2N+HI |  |  |
| 0       | 0               | 6    | 6    | 12    | 12    |  |  |
| 1       | 1               | 5    | 7    | 11    | 13    |  |  |
| 2       | 2               | 4    | 8    | 10    | 14    |  |  |
| 3       | 3               | 3    | 9    | 9     | 15    |  |  |

| Stage 2 |                 |      |      |       |       |
|---------|-----------------|------|------|-------|-------|
|         | Nodal Diameters |      |      |       |       |
| HI      | HI              | N-HI | N+HI | 2N-HI | 2N+HI |
| 0       | 0               | 12   | 12   | 24    | 24    |
| 1       | 1               | 11   | 13   | 23    | 25    |
| 2       | 2               | 10   | 14   | 22    | 26    |
| 3       | 3               | 9    | 15   | 21    | 27    |
| 4       | 4               | 8    | 16   | 20    | 28    |
| 5       | 5               | 7    | 17   | 19    | 29    |
| 6       | 6               | 6    | 18   | 18    | 30    |





# Submit linked analysis job without waiting for completion

 This feature enables the submission of linked analyses on DCS without needing to wait for the upstream system's completion, thus allowing users to close Mechanical and conserve license for other purposes.





# Limitations

- The synchronous submission process is supported for most cases except if an analysis includes any of the following features:
  - Spot Welds
  - Bolt Pretension
  - Weak Springs
  - EM Transducer loading condition
  - Command (APDL) objects
  - Contact Splitting
  - Linking though imported loads

These features may require creation of additional elements or nodes during the solution process or the results to be downloaded and hence, Mechanical would need to wait for the completion of the upstream job on DCS.



#### **New Feature:**

# **Exposure of Hybrid Parallel option to run solutions in Mechanical**

#### Value Provided:

- Reduced memory usage
- Effective use of hardware resource
- Improved scalability of large models with high load balance ratios



# Why Hybrid Parallel?

- Reduced Memory usage : Hybrid parallel reduces memory usage by using less MPI processes per compute node compared to distributed memory parallel ( DMP )
- Effective use of hardware resource: To use fixed amount of memory with DMP, the cluster must use a fewer number of processes per compute node to increase memory and solution efficiency. Hybrid parallel can be used to address this issue and the cluster resource will be utilized in its full capacity
- Improved scalability of large models with high load balance ratios: Hybrid parallel can improve efficiency and scalability of large models where the load balance ratio is not optimum and such examples may include the cases where the contact pairs cannot be split, or re-mesh happens in certain regions due to mesh adaptivity (Nonlinear Adaptive Region supported in Mechanical)



# Hybrid Parallel exposure in Mechanical

- Hybrid Parallel solution is supported inside Mechanical for MAPDL solution. To enable it, the user need to go to Solve Process Settings and Advanced Properties option.
- Once enabled, the user can specify the number of Threads per process and based on the cores and number of threads per process, the number of processes required will be displayed. The number of processes will be cores divided by number of threads per process

| 🚰 Advanced Properties                                   | $\times$ |
|---------------------------------------------------------|----------|
| ✓ Distribute Solution (if possible)                     |          |
| Max number of utilized cores: 8                         |          |
| Hybrid Parallel (Mechanical APDL)                       |          |
| Threads per process: 2                                  |          |
| Number of processes: 4                                  |          |
| Use GPU acceleration (if possible) None                 |          |
| Number of utilized GPU devices: 1                       |          |
| Manually specify Mechanical APDL solver memory settings |          |
| Workspace: 0 MB                                         |          |
| Database: 0 MB                                          |          |
| Additional Command Line Arguments:                      |          |
|                                                         |          |
|                                                         |          |
|                                                         |          |
|                                                         |          |
|                                                         |          |
|                                                         |          |
|                                                         |          |
| OK Cancel                                               |          |



# Hybrid Parallel exposure in Mechanical

 Once the solution is executed in Hybrid parallel mode, the solution statistics will display that the solution was done using the Distributed and Shared Memory parallel option and it will also show the cores, processes and threads per process used for the simulation





# Hybrid Parallel limitation in Mechanical

• The solver can automatically switch to Hybrid parallel mode for some cases where the distributed solution is turned on and Hybrid parallel mode is not enabled inside Mechanical.

This happens for cases where solver analyze that Hybrid parallel mode is efficient than Distributed parallel. In this mode, there is limitation that user cannot run the downstream linked analysis.

Hence, for this rare scenarios, it is recommended to explicitly turn on the Hybrid parallel option in Mechanical and re-run the upstream analysis before proceeding for downstream analysis.

For example, for pre-stress full harmonic analysis, if the upstream static analysis has automatically enabled the hybrid parallel mode, then the downstream harmonic analysis may not run successfully in Mechanical



#### **New Feature:**

#### **Coupled Field analysis exposure in Mechanical**

#### Value Provided:

- Enables easier workflows for sensor design, MEMs devices and actuators
- Ability to model piezoelectric and acoustic degrees of freedom
- Includes a library of commonly used piezoelectric materials used in sensor design



# Piezoelectric coupling in Coupled Field Transient

Structural and Electric (Charge based) physics interaction through Piezoelectric coupling is supported for Coupled Field Transient Analysis. The physics region can be inserted to apply this physics interaction. Structural and Electric Boundary conditions are available for the analysis

| - | Scope               |                    |  |  |  |  |
|---|---------------------|--------------------|--|--|--|--|
|   | Scoping Method      | Geometry Selection |  |  |  |  |
|   | Geometry All Bodies |                    |  |  |  |  |
| - | Definition          |                    |  |  |  |  |
|   | Structural          | tructural Yes      |  |  |  |  |
|   | Acoustics           | No                 |  |  |  |  |
|   | Thermal             | No                 |  |  |  |  |
|   | Electric Charge     |                    |  |  |  |  |
|   | Suppressed          | No                 |  |  |  |  |
| - | Coupling Options    |                    |  |  |  |  |
|   | Piezoelectric       | On                 |  |  |  |  |





## Piezoelectric coupling in Coupled Field Transient

- Structural and Electric results and probes are supported
- The user can also plot the Charge convergence under Solution output
- As shown in the example, Voltage is being generated as a results of applied mechanical stress due to Direct piezoelectric effect









### Piezoelectric-Acoustics coupling in Coupled Field Transient

- Piezoelectric coupling along with interaction of Acoustics physics using the Fluid Solid interface can be performed in Coupled Field Transient analysis
- Physics region object is used to define bodies with Acoustics, Structural or Structural-Electric (Charge based) physics. The boundary conditions associated to Acoustics, Structural and Electric physics can be defined in the analysis

|   | etalis of Physics i        | Region          |  |  |  |  |
|---|----------------------------|-----------------|--|--|--|--|
| - | Scope                      |                 |  |  |  |  |
|   | Scoping Method             | Named Selection |  |  |  |  |
|   | Named Selection piezo_body |                 |  |  |  |  |
| 1 | Definition                 |                 |  |  |  |  |
|   | Structural                 | Yes             |  |  |  |  |
|   | Acoustics                  | No              |  |  |  |  |
|   | Thermal                    | No              |  |  |  |  |
|   | Electric                   | Charge          |  |  |  |  |
|   | Suppressed                 | No              |  |  |  |  |
| ] | Coupling Options           |                 |  |  |  |  |
|   | Piezoelectric              | On              |  |  |  |  |

| l | Scope                       |                 |  |
|---|-----------------------------|-----------------|--|
|   | Scoping Method              | Named Selection |  |
|   | Named Selection             | fluid_body      |  |
| 1 | Definition                  |                 |  |
|   | Structural                  | No              |  |
|   | Acoustics                   | Yes             |  |
|   | Thermal                     | No              |  |
|   | Electric                    | No              |  |
|   | Suppressed                  | No              |  |
| 3 | Acoustic Domain Definition  |                 |  |
|   | Artificially Matched Layers | Off             |  |
| 3 | Advanced Settings           |                 |  |
|   | Reference Pressure          | 2.e-005 Pa      |  |
|   | Reference Static Pressure   | 1.0133e+005 Pa  |  |
|   |                             |                 |  |

Compressible

Fluid Behavior





## Piezoelectric-Acoustics coupling in Coupled Field Transient

- Acoustics, Structural and Electric results and probes are available. Plots of Charge convergence, Heat convergence, Force convergence can be seen on Solution output
- For example, the Acoustic pressure distribution can be seen on Acoustic body. Energy probe is also shown.





Ansys

# Sample piezoelectric material properties in Engineering Data

- A library of common piezoelectric materials is provided in Engineering Data Sources
- These can be readily added to the project for the analysis and updated with material supplier provided data

| Engineering Data Sources             |                    |                                             |               | <b>→ ↓</b> X                    |                                                                                                                                                                                                                                                                               |
|--------------------------------------|--------------------|---------------------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AB                                   | С                  |                                             | D             | ^                               |                                                                                                                                                                                                                                                                               |
| 1 Data Source 🥖                      | Location           |                                             | Descrip       | tion                            |                                                                                                                                                                                                                                                                               |
| 4 III General Materials              |                    | General use material samples for use in var | rious analys  | es.                             |                                                                                                                                                                                                                                                                               |
| 5 🗰 Additive Manufacturing Materials |                    | Additive manufacturing material camples fr  | or use in adr | litive manufacturing analyses   |                                                                                                                                                                                                                                                                               |
| 6 🎒 Geomechanical Materials          | Outline of Piezoel | ectric Materials                            |               |                                 | -                                                                                                                                                                                                                                                                             |
| 7 🗰 Composite Materials              |                    | A                                           | B C           | D                               | E                                                                                                                                                                                                                                                                             |
| 8 🎬 General Non-linear Materials     | 1                  | Contents of Piezoelectric Materials         | Add           | Source                          | Description                                                                                                                                                                                                                                                                   |
| 9 🎬 Explicit Materials               | 2 ⊟ Mat            | erial                                       |               |                                 |                                                                                                                                                                                                                                                                               |
| 10 🎬 Hyperelastic Materials          |                    | P. Preise Threads Crushel (Pr.T.O.2)        | -             | Prince ale atrice Materiale and | Berlincourt D., Jaffe H. (1958) Elastic and piezoelectric                                                                                                                                                                                                                     |
| 11 III Magnetic B-H Curves           | _ 3                | Barium Intanate Crystal (BariOS)            | 5             | Piezoelectric_Materials.xmi     | 111. pp. 143-148                                                                                                                                                                                                                                                              |
| 12 III Thermal Materials             | 4                  | 📎 Lithium Niobate (LiNbO3)                  | 4             | Piezoelectric_Materials.xml     | Tiersten H.F "Linear Piezoelectric Plate Vibrations," Plenum<br>Press, New York (1969)                                                                                                                                                                                        |
| 14 III Piezoelectric Materials       | 5                  | 📎 Lithium Tantalate (LiTaO3)                | <b>æ</b>      | Piezoelectric_Materials.xml     | Tiersten H.F "Linear Piezoelectric Plate Vibrations," Plenum<br>Press, New York (1969)                                                                                                                                                                                        |
|                                      | 6                  | 📎 Lithium Teraborate (Li2B4O7)              | <b></b>       | Piezoelectric_Materials.xml     | V. Petrov,R. Komatsu and T. Sugawara. Temperature tuned<br>noncritical phase-matchingin Li2B407 for generation of cw<br>laser radiation at 244 nm. Electron.Lett. 35 (1999) 721-2                                                                                             |
|                                      | 7                  | ♥ PZT-26                                    | 4             | Piezoelectric_Materials.xml     | C. Bricault, C. Pezerat, M. Collet, A. Pyskir, P. Perrard, et al.<br>. Multimodal reduction of acoustic radiation of thin plates by<br>using single piezoelectric patch with a negative capacitance<br>shunt. Applied Acoustics, Elsevier, 2019,145,pp.320-327                |
|                                      | 8                  | № PZT-4                                     | 4             | Piezoelectric_Materials.xml     | J Yang, Analysis of piezoelectric Devices (Appendix II), World<br>Scientific Publication, Hackensack N.J. ISBN 9789812568618                                                                                                                                                  |
|                                      | 9                  | ₲ PZT-5H                                    | 4             | Piezoelectric_Materials.xml     | H. A. Kunkel, S. Locke and B. Pikeroen, "Finite-element<br>analysis of vibrational modes in piezoelectric ceramic disks," in<br>IEEE Transactions on Ultrasonics, Ferroelectrics, and<br>Frequency Control, vol. 37, no. 4, pp. 316-328, July 1990,<br>doi: 10.1109/58.56492. |
|                                      | 10                 | 📎 PZT-8                                     | 4             | Piezoelectric_Materials.xml     | J Yang, Analysis of piezoelectric Devices (Appendix II), World<br>Scientific Publication, Hackensack N.J. ISBN 9789812568618                                                                                                                                                  |
|                                      | 11                 | 📎 Quartz (alpha)                            | 4             | Piezoelectric_Materials.xml     | Basic Material Quartz and Related Innovations. In:<br>Piezoelectricity. Springer Series in Materials Science, vol 114.<br>Springer, Berlin, Heidelberg                                                                                                                        |



## ThermoElectric coupling in Coupled Field Static analysis

- A Thermal Electric coupling can be performed in Coupled Field Static analysis.
- The analysis can account for thermoelectric effects, such as Joule heat, Seebeck, Peltier and Thomson effect. The coupling is included either at Load vector level or Matrix level
- The physics region can be specified with physics as Thermal only, Electric Conduction only or both. Thermal and Electric boundary conditions can be defined

| D | Details of "Physics Region" 👻 🖣 🗖 🗙 |                    |  |  |  |  |
|---|-------------------------------------|--------------------|--|--|--|--|
| - | Scope                               |                    |  |  |  |  |
|   | Scoping Method                      | Geometry Selection |  |  |  |  |
|   | Geometry                            | All Bodies         |  |  |  |  |
| - | - Definition                        |                    |  |  |  |  |
|   | Structural                          | No                 |  |  |  |  |
|   | Acoustics                           | No                 |  |  |  |  |
|   | Thermal                             | Yes                |  |  |  |  |
|   | Electric                            | Conduction         |  |  |  |  |
|   | Suppressed                          | No                 |  |  |  |  |





# ThermoElectric coupling in Coupled Field Static analysis

- Thermal and Electric results and probes are available
- Heat Convergence and Current convergence plots can be seen on Solution Output.
- For example, the temperature and voltage distribution of a Thermoelectric cooler is shown below.





# Structural-ThermoElectric coupling in Coupled Field Static analysis

- Coupling of Structural and Thermoelectric physics can be performed in Coupled Field Static analysis. The coupling effects of both Structural-Thermal using thermal strain and Thermal-Electric conduction based of Joule heating, Seebeck, Peltier and Thomson effects will be considered when Structural-Thermal-Electric Conduction based physics is specified using Physics region.
- Structural, Thermal and Electric boundary conditions can be defined in the analysis

| D | etails of "Physics I              | Region" 🔻 🕂 🗖 🗙        |  |  |  |  |
|---|-----------------------------------|------------------------|--|--|--|--|
| - | Scope                             |                        |  |  |  |  |
|   | Scoping Method                    | hod Geometry Selection |  |  |  |  |
|   | Geometry                          | 1 Body                 |  |  |  |  |
| - | Definition                        |                        |  |  |  |  |
|   | Structural                        | Yes                    |  |  |  |  |
|   | Acoustics                         | No                     |  |  |  |  |
|   | Thermal                           | Yes                    |  |  |  |  |
|   | Electric                          | Conduction             |  |  |  |  |
|   | Suppressed No                     |                        |  |  |  |  |
| 3 | Coupling Option:                  |                        |  |  |  |  |
|   | Thermal Strain Program Controlled |                        |  |  |  |  |

| D | etails of "Physics I | Region 2" 🔻 🕇 🗖 🗙  |  |  |  |  |
|---|----------------------|--------------------|--|--|--|--|
| - | Scope                |                    |  |  |  |  |
|   | Scoping Method       | Geometry Selection |  |  |  |  |
|   | Geometry             | 1 Body             |  |  |  |  |
| Ξ | Definition           |                    |  |  |  |  |
|   | Structural           | No                 |  |  |  |  |
|   | Acoustics            | No                 |  |  |  |  |
| ſ | Thermal              | Yes                |  |  |  |  |
|   | Electric             | Conduction         |  |  |  |  |
|   | Suppressed           | No                 |  |  |  |  |





# Structural-ThermoElectric coupling in Coupled Field Static analysis

- Structural, Thermal and Electric results and probes are available. The user can plot Force Convergence, Heat Convergence and Current convergence plots from Solution output.
- The animation of the deformation and voltage of an Electro Thermal Micro actuator is shown below





# Linear Periodic symmetry for Voltage (Coupled Field Analysis )

- In previous releases linear periodic objects can be scoped to only structural or thermal-electric bodies. From 2022 R2, Linear periodic type symmetry region can be applied in Coupled Field Analysis with Displacement and Voltage degree of freedom.
- Use **Apply To** property to specify the Degree Of Freedom(DOF):
  - Applicable DOF (Default)
    - specifies Displacement and Voltage DOFs on the geometries of the Low Boundary and High Boundary.
  - Displacement
    - specifies Displacement DOF on the geometries of the Low Boundary and High Boundary.
  - Voltage
    - specifies Voltage DOF on the geometries of the Low Boundary and High Boundary.

| = | Scope          |                                |  |  |  |  |
|---|----------------|--------------------------------|--|--|--|--|
|   | Scoping Method | Geometry Selection             |  |  |  |  |
|   | Low Boundary   | 1 Face                         |  |  |  |  |
|   | High Boundary  | 1 Face                         |  |  |  |  |
| - | Definition     |                                |  |  |  |  |
|   | Scope Mode     | Manual                         |  |  |  |  |
|   | Туре           | Linear Periodic                |  |  |  |  |
|   | Behavior       | Free                           |  |  |  |  |
|   | Apply To       | Applicable DOF                 |  |  |  |  |
|   |                | Applicable DOF<br>Displacement |  |  |  |  |



# Summary of Coupled Field systems

|                                                | Coupled Field<br>Harmonic              | Coupled Field<br>Modal                 | Coupled Field Static                                                                  | Coupled Field Transient                                                              |
|------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Structural-<br>Thermal                         | [1]                                    | [2]                                    | Thermal strain<br>Thermoplasticity<br>Thermoviscoelasticity                           | Thermal strain<br>Thermoelastic Damping<br>Thermoplasticity<br>Thermoviscoelasticity |
| Structural -<br>Acoustics                      | Fluid Solid Interface                  | Fluid Solid Interface                  | Fluid Solid Interface                                                                 | Fluid Solid Interface                                                                |
| Structural Electric<br>(Charge)                | Piezoelectric                          | Piezoelectric                          | Piezoelectric                                                                         | Piezoelectric 🔶 📩                                                                    |
| Structural Electric<br>Acoustic                | Piezoelectric<br>Fluid Solid Interface | Piezoelectric<br>Fluid Solid Interface | Piezoelectric<br>Fluid Solid Interface                                                | Piezoelectric $\bigstar$<br>Fluid Solid Interface                                    |
| Thermal Electric<br>(Conduction)               | [2]                                    | [2]                                    | Joule Heating<br>Seebeck effect<br>Peltier effect<br>Thomson effect                   | [1]                                                                                  |
| Structural Thermal<br>Electric<br>(Conduction) | [2]                                    | [2]                                    | Joule Heating<br>Seebeck effect<br>Peltier effect<br>Thomson effect<br>Thermal strain | [1]                                                                                  |

1 Not Supported in Mechanical

2 Not Applicable



#### Transient piezoelectric and piezo-acoustic

- Piezoelectric haptic feedback devices
- Pulse based piezoelectric transducer design
- Acoustic imaging/NDE through piezoelectric transmitter/receiver
- Piezoelectric micro-speaker design
- Many others

#### Static structural-thermoelectric

- Joule heating in various applications
- Electric connectors, splice design
- Thermocouple design
- Thermoelectric cooler and generator design
- Thermoelectric Micro-actuators
- Many others



#### **New Feature:**

#### Hyper viscoelastic materials in Linear Perturbation full harmonic analysis

#### Value Provided:

• Allows for the harmonic analysis of preloaded hyper viscoelastic materials.



# Hyper Viscoelasticity in Perturbed Harmonic Analyses

4000

3500

3000

2500

2000

1500

1000

500

- Harmonic analysis is important in areas like vibration isolation and noise transmission
- For Noise, Vibration and Harshness (NVH) in vehicle design, the structures include plastics, foams, and other vibration absorbing materials
  - It is important to capture the deformed and prestressed state of the material during harmonic analysis
- This new capability will allow users to simulate the deformation in a static or transient step and then perform a followon perturbed harmonic analysis to determine the vibration characteristics of the structures that have hyper viscoelastic materials

Vibration Isolation Mount, Yeoh hyperelastic with Prony series viscoelasticity, compressed 30% and experiencing a fixedamplitude small vibration

Real(F)

Imaginary(F)

Force Transmission vs. Vibration Frequency shows the damping behavior (Imaginary part) is greatest at about 0.6 Hz



#### **New Feature:**

#### **Support for AMD GPUs**

#### Value Provided:

• Faster simulations (HPC value)



- Added support for Instinct GPUs from AMD
  - New generation (CDNA 2.0) cards significantly faster than previous generation (CDNA 1.0)
  - Uses HIP/ROCm 5.0 **7** requires AMD driver version 21.50 or newer

# AMDA ROCM





- Added support for Instinct GPUs from AMD
  - Focused on sparse direct solver
  - Targeting Linux only this release

| Model              | Release Date  | Memory<br>Capacity<br>(GB) | Memory<br>Bandwidth<br>(GB/s) | Peak FP64<br>Compute<br>(TFlops) | Peak FP32<br>Compute<br>(TFlops) | Peak TF32<br>Compute<br>(TFlops) |
|--------------------|---------------|----------------------------|-------------------------------|----------------------------------|----------------------------------|----------------------------------|
| AMD Instinct MI100 | November 2020 | 32                         | 1223                          | 11.5                             | 23.1                             | N/A                              |
| NVIDIA A100        | May 2020      | 40/80                      | 1555/1935                     | 9.7 (19.5 <sup>1</sup> )         | 19.5                             | 156                              |
| AMD Instinct MI210 | December 2021 | 64                         | 1638                          | 22.6                             | 22.6                             | N/A                              |
| AMD Instinct MI250 | November 2021 | 128                        | 3277                          | 45.3                             | 45.3                             | N/A                              |

<sup>1</sup> Compute speed when using tensor cores

• Data provided by https://en.wikipedia.org



• Significantly faster performance for direct solver benchmarks





• Significantly faster performance for direct solver benchmarks





• Significantly faster performance (Engine block model)





#### **New Feature:**

Default number of cores increased from 2 to 4

#### Value Provided:

- Better HPC value
- When the product launches by default using only 2 CPU cores, it is underutilizing what they already paid for



# Distributed Memory Parallel Enhancements

- Default changed from 2 to 4 CPU cores
- Replaced "Distributed ANSYS" naming "Distributed Memory Parallel"
- MPI library support
  - Upgraded to Intel MPI 2021 Update 6 on Windows and Linux
    - Improves performance, scalability and robustness
    - Linux clusters using (older) Mellanox Infiniband 4.x ⑦ (older) Intel MPI 2018 is automatically chosen
  - Microsoft MPI v10.0 is unchanged at this release on Windows
  - Open MPI v4.0.5 is unchanged at this release on Linux



# Distributed Memory Parallel Enhancements

• Improved scaling at higher core counts



50 MDOF; Sparse direct solver
Nonlinear, static analysis involving large deflections, 20 equilibrium iterations, bonded contact pairs
Linux cluster; each compute node contains 2 Intel Xeon Platinum 8260L processors (48 cores), 192GB RAM, SSD, CentOS 7.7, Mellanox HDR Infiniband





#### **New Feature:**

SMART enhancements: Automatic Crack Initiations and Remeshing Mesh Sizing Control

#### Value Provided:

- Broaden simulation scopes
- Enable users to better control meshes
- Improve solution accuracy and robustness



# SMART Enhancement: Multi Cracks Initiation

- Multiple crack initiations
  - Multiple cracks can be initiated simultaneously or sequentially
- Maximum principal stress based initiation criteria
- Sizing control of initiated crack
- Support both fatigue and static crack growth











# SMART Enhancement: Automatic Crack Initiation

- Automatic crack initiation with preexisting crack(s)
  - Automatic crack initiation supports now structures with pre-existing crack(s)
- Sizing control of initiated crack
- Maximum principal stress-based initiation criteria
- Support both fatigue and static crack growth

Support multiple pre-existing cracks and multiple crack initiations



Stress solution of initial model

After crack-initiation





# SMART Enhancement: Mesh Sizing Control

- SMART remeshing mesh sizing control
  - Sizing control with specific node or element components
  - Sizing control with specific locations (coordinates)



Mesh sizing control to maintain geometry

Fatigue crack growth Mesh coarsening option: CONS





# SMART Enhancement: Mesh Sizing Control

• Perforated plate with two edge cracks

#### Fatigue crack growth Mesh coarsening option: AGGR



# Mesh Oracle

Without mesh sizing control

#### With mesh sizing control




#### **New Feature:**

#### **Composite post-processing functionalities moved into DPF plugin**

#### Value Provided:

- More efficient post-processing
- More efficient and robust
- Easy to expose the composite post-processing functionalities in different contexts such as pyAnsys
- Flexibility for the future



### ACP – LS-DYNA Workflow in Workbench

- Analyze composite structures with respect to crash and impact
- Supports shell models as \*ELEMENT\_SHELL, solid models as \*ELEMENT\_TSHELL (beta) and any kind of assemblies (new)
- Many LS-DYNA material cards are now available in **Engineering Data** allowing the definition of a material card per ply material



74

### Composite Post-Processing in Mechanical

- Composite post-processing is a new plugin of DPF
- Used by the existing Composite Failure Tool and Sampling Point Tool in Mechanical
- More efficient and more robust
- Allows for more flexible post-processing in the future (pyAnsys)



# Transferring the Lay-up on a Solid Mesh

- The mapping can now be restricted to sub-domains of the solid mesh.
- With the new Lay-up Mapping Objects it is possible to define exactly which plies are transferred onto which regions (Mesh Components) of the volume mesh.
- This improves the handling of complex and even hybrid structures





# Lay-up Mapping: Modeling a T-Joint \*

1. Create a solid mesh with Named Selections



#### 2. Pass the solid mesh (C4) to ACP Pre (D5)



3. Define lay-up mapping: source (plies) and target (Mesh Components)







### Section Cut Scoping

- Section Cuts allow visualizing and exporting the composite lay-up definition on an arbitrary section plane
- An option was added to restrict the scope of a Section Cut to selected Element Sets
- This makes Section Cuts easier to interpret, especially in complex geometries



Section Cut with ply-wise angles



| L Section              | on Cut Prope                             | erties       |                   | _     |        |  |  |
|------------------------|------------------------------------------|--------------|-------------------|-------|--------|--|--|
| Name:                  | SectionCut.1                             |              |                   |       |        |  |  |
| ID: S                  | ectionCut.1                              |              |                   |       |        |  |  |
| General                | Wire Frame                               | Options      | Surface Optio     | ns    |        |  |  |
| Active:                |                                          |              |                   |       |        |  |  |
| Positio                | n                                        |              |                   |       |        |  |  |
| Intera                 | ctive Plane:                             | $\checkmark$ |                   |       |        |  |  |
|                        | Origin:                                  | (83.2290     | , 2.5000, -0.0000 | )     |        |  |  |
|                        | Normal:                                  | ( 0.0000,    | 0.0000, 1.0000)   |       |        |  |  |
| Refer                  | ence Directio                            | n 1: (1.0    | 000, 0.0000, 0.00 | 000)  | Flip   |  |  |
| Show                   | Plane: 🗹                                 |              |                   |       |        |  |  |
| Scopin                 | g                                        |              |                   |       |        |  |  |
| Entire                 | Model:                                   |              |                   |       |        |  |  |
| Eleme                  | nt Sets: ['el                            | s_huelle', ' | 'els_gurt']       |       |        |  |  |
| Extrusio               | on                                       |              |                   |       |        |  |  |
|                        | Type:                                    | Wire Fran    | ne                |       | ~      |  |  |
| 9                      | Scale Factor: 0.000 🦛 📕 🖨 🖨 11.000 1.000 |              |                   |       |        |  |  |
| Core Scale Factor: 1.0 |                                          |              |                   |       |        |  |  |
| Sectio                 | on Cut Type:                             | Modeling     | g Ply Wise        |       | ~      |  |  |
|                        |                                          |              |                   |       |        |  |  |
|                        |                                          |              | ОК                | Apply | Cancel |  |  |



#### Graphical User Interface

- The UI of ACP has been improved in these areas
  - Use **F2** for renaming objects directly via the Object Tree.
  - Hot keys were added for Copy & Paste (Ctrl + C, Ctrl + V). Multi-selection is also supported.
  - The Object Tree now always shows automatically the latest state (up-to-date, out-of-date) of the objects.



 Vector plots such as fiber directions or orientations were further refined. Use the Plot Properties dialog from the toolbar to manually adjust the settings (scaling factor and density).



| 🚼 Plot Properties                                             |                           | _      |            | ×     |
|---------------------------------------------------------------|---------------------------|--------|------------|-------|
| Vector Scaling Fa<br>Reduce Number of Displayed Vectors by Fa | ctor: 0.000 🌾 🚃 🖡         |        | 20.000 10  | .000  |
| Reset to Defaults                                             | Set Values to 1 Set Value | s to 5 | Set Values | to 10 |
|                                                               |                           | ОК     | Cano       | cel   |





#### **New Feature:**

#### **Multizone Hex Meshing**

#### Value Provided:

- Obtain hex elements with less requirements with CartSweep and ThinSweep decomposition
- Improved robustness of automatic-thickness



### Thin Sweep Decomposition for Multizone

| No         |
|------------|
| MultiZone  |
| Thin Sweep |
|            |

- **Thin Sweep** is a New Multizone Decomposition option for thin bodies
- Blocking technology is used to create and mesh 2D block on one side and pull automatically into 3D block
- In 22R2 we begin to support some simple bodies where connectivity is required
  - Share topology connections from two sides working on simple cases





### Cart Sweep Decomposition for Multizone

- **Cart Sweep** is a New Multizone Decomposition option for 2.5D bodies
  - Sweepable in one Cartesian direction
  - Direction can be specified by picking source faces
- A Cartesian background grid is used to create blocks
- Allows users to mesh with hex elements with less requirement to decompose into hex-able volumes in geometry tools

#### Definition

| Suppressed         | No         |
|--------------------|------------|
| Method             | MultiZone  |
| Decomposition Type | Cart Sweep |











#### **New Feature:**

# **Enhanced Material Support for the LS-DYNA Solver**

#### Value Provided:

- Simplifies the modeling process
- Enables Advanced Material Modeling for a wide range of applications including Drop Test, Impact, and Composites Application



# **Material Improvements**



### Improved Material Support

- Additional fields are made available for the definition of LS-DYNA specific material MAT\_SIMPLIFIED\_RUBBER/FOAM
- Materials added:
  - MAT\_OGDEN\_RUBBER including all input card variations and optional cards
  - MAT\_GENERAL\_VISCOELASTIC

|    | A                                           | В     | с    | D   | E   |
|----|---------------------------------------------|-------|------|-----|-----|
| 1  | Property                                    | Value | Unit | 8   | ſŗ, |
| 2  | *MAT_GENERAL_VISCOELASTIC                   |       |      |     |     |
| 3  | Definition                                  |       |      |     |     |
| 4  | Tensile Pressure Elimination Flag, pcf      | 0     |      |     |     |
| 5  | Elastic Flag, ef                            | 0     |      |     |     |
| 6  | Number of Terms in Shear Fit, nt            | 0     |      |     |     |
| 7  | Shear Fit Coefficient, bstart               | 0     | s^-1 | · I |     |
| 8  | Optional Ramp Time for Shear Loading, tramp | 0     | s    | · I |     |
| 9  | Number of Terms in Bulk Fit, ntk            | 0     |      |     |     |
| 10 | Bulk Fit Coefficient, bstartk               | 0     | s^-1 | ·   |     |
| 11 | Optional Ramp Time for Bulk Loading, trampk | 0     | s    | ·   |     |
| 12 | Initial Shear Modulus, G0                   | 1     | Pa   | ·   |     |
| 13 | Initial Bulk Modulus, KO                    | 1     | Pa   | ·   |     |

|    | SDYNA External Model - MAT                |
|----|-------------------------------------------|
| 12 | *MAT_ELASTIC                              |
| 1  | *MAT_ORTHOTROPIC_ELASTIC                  |
| 1  | *MAT_ANISOTROPIC_ELASTIC                  |
| 1  | *MAT_PLASTIC_KINEMATIC                    |
| 7  | *MAT_BLATZ-KO_RUBBER                      |
| 1  | *MAT_HIGH_EXPLOSIVE_BURN                  |
| 1  | *MAT_NULL                                 |
| 7  | *MAT_JOHNSON_COOK                         |
| 1  | *MAT_POWER_LAW_PLASTICITY                 |
| 7  | *MAT_PIECEWISE_LINEAR_PLASTICITY          |
| 7  | *MAT_ENHANCED_COMPOSITE_DAMAGE            |
| 7  | *MAT_LAMINATED_COMPOSITE_FABRIC           |
| 1  | *MAT_CRUSHABLE_FOAM                       |
| P  | *MAT_OGDEN_RUBBER                         |
| 7  | *MAT_SIMPLIFIED_JOHNSON_COOK              |
| 1  | *MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY |
| 7  | *MAT_SIMPLIFIED_RUBBER/FOAM               |
| 17 | *MAT_BILKHU/DUBOIS_FOAM                   |
| 1  | *MAT_FABRIC                               |
| 1  | *MAT_ADD_EROSION                          |
| 12 | *MAT_ADD_DAMAGE_GISSMO                    |
| 7  | *MAT_GENERAL_VISCOELASTIC                 |



# Improved Material Support

Many of the constitutive models in LSDYNA do not incorporate failure and erosion in the main model.

The following Material Models additions provide a way of including damage and failure in these models.

\*MAT\_ADD\_EROSION \*MAT\_ADD\_DAMAGE\_GISSMO

| Project 🔗 A                                    | 2:Engineeri | ng Data 🗙                                                   |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
|------------------------------------------------|-------------|-------------------------------------------------------------|----------|-------------|----------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------|
| Y Filter Engineering Data III Engineering D    | ata Sources | Reload Extensions                                           |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| Toolbox · 부 :<br>X'di Dringipal Stragg Failura | × Outline   | of Schematic A2: Engineering Data                           |          |             |                      |                     | And the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥ | <b>д</b> > |
| Principal Strain Failure                       | ·           | A                                                           | В        | С           | D                    |                     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| Principal Strain Failure                       | 1           | Contents of Engineering Data                                | Source   | Description |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| Cal Johnson Cook Failure                       | 2           | 🗖 Material                                                  |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| E Forming Plasticity                           | 3           | So Material With Failure                                    | <b>T</b> | m           |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| 2 Bilinear Transversely Anisotropic Harr       | *           | Click here to add a new material                            |          | line i      |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | _          |
| Multilinear Transversely Anisotropic H         |             |                                                             |          | _           |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| 2 Bilinear ELD Transversely Anisotropic        |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| Multilinear FLD Transversely Anisotropic       |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| Bilinear 3 Parameter Barlat Hardening          |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| Exponential 3 Parameter Barlat Harder          |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| Exponential Barlat Anisotropic Hardeni         |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| E Foams                                        |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| Rate Independent Low Density Foam              |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| El Eulerian                                    |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| Ma Vacuum                                      |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
|                                                |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| Cal Concrete EC2 (Beta)                        |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| SDVNA External Model - MAT                     |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| Cal                                            | Description |                                                             | _        | _           |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
|                                                | Propert     | des of Outline Row 4: Material With Failure                 |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 4 7        |
| 2 *MAT ANISOTROPIC FLASTIC                     |             | A                                                           |          |             |                      | В                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D | E          |
| MAT PLASTIC KINEMATIC                          | 1           | Property                                                    |          |             |                      | Value               | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 | (p2        |
| MAT_BLATZ-KO_RUBBER                            | 2           | 🔁 Material Field Variables                                  |          |             |                      | Table               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| MAT_HIGH_EXPLOSIVE_BURN                        | 3           | 🔁 Density                                                   |          |             |                      | 7800                | kg m^-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| MAT_NULL                                       | 4           | Isotropic Elasticity                                        |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| MAT_JOHNSON_COOK                               | 5           | Derive from                                                 |          |             |                      | Young's Modulus and |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| MAT_POWER_LAW_PLASTICITY                       | 6           | Young's Modulus                                             |          |             |                      | 1E+10               | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | E          |
| *MAT_PIECEWISE_LINEAR_PLASTICI                 | 7           | Poisson's Ratio                                             |          |             |                      | 0.3                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 | Ē          |
| *MAT_ENHANCED_COMPOSITE_DAM                    | 8           | Bulk Modulus                                                |          |             |                      | 8.3333E+09          | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | F          |
| *MAT_LAMINATED_COMPOSITE_FAB                   | 9           | Shear Modulus                                               |          |             |                      | 3.8462E+09          | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | F          |
| 2 MAT_CRUSHABLE_FOAM                           | 10          |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m | -          |
| TAL_UGDEN_RUBBER                               | 10          | Avial Dameira Easter da                                     |          |             |                      | 0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| *MAT_MODIFIED_PIECEWISE   INFAL                | 11          | Panding Damping Factor, da                                  |          |             |                      | 0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| S *MAT SIMPLIFIED RUBBER/FOAM                  | 12          |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |            |
| A *MAT BILKHU/DUBOIS FOAM                      | 13          | E MAT_ADD_EROSION                                           |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| MAT FABRIC                                     | 14          |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| A MAT ADD EROSION                              | 15          | Time Period, dtefit                                         |          |             |                      | 0                   | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| *MAT_ADD_DAMAGE_GISSMO                         | 16          | Minimum Time Step Size at Failure, dtmin                    |          |             |                      | 0                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| MAT_GENERAL_VISCOELASTIC                       | 17          | Maximum Effective Strain at Failure, effeps                 |          |             |                      | 0                   | m m^-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| MAT_COMPOSITE_FAILURE_SHELL_                   | 18          | Critical Energy for Nonlocal Failure Criterion, engcrt      |          |             |                      | 0                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| *MAT_COMPOSITE_FAILURE_SOLID_                  | 19          | Tensorial Shear Strain at Failure, epssh                    |          |             |                      | 0                   | m m^-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| *MAT_ORTHOTROPIC_SIMPLIFIED_D                  | 20          | Thinning Strain at Failure for thin and Thick Shells, epsth | in       |             |                      | 0                   | m m^-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| LSDYNA External Model - EOS                    | 21          | Exclusion Number, excl                                      |          |             |                      | 0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| *EOS_LINEAR_POLYNOMIAL                         | 22          | Failure time, failtm                                        |          |             |                      | 0                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 |            |
| EOS_JWL                                        | 23          | Flag for Damage Model, idam                                 |          |             |                      | 0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |
| EUS_GRUNEISEN                                  | 24          | Stress Impulse for Failure, impulse                         |          |             |                      | 0                   | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
|                                                | 25          | Minimum Principal Strain at Failure, mneps                  |          |             |                      | 0                   | m m^-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| Custon Matadal Madda                           | 26          | Minimum Pressure at Failure, mnpres                         |          |             |                      | 0                   | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| E Custom Material Models                       | 27          | Variable to Invoke a Failure Criterion Based on Maximum     | Princi   | ipal S      | train, mxeps         | 0                   | m m^-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
| Create Custom Model                            | 28          | Maximum Pressure at Failure, mxpres                         |          |             | en mesterne feitiges | 0                   | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |
|                                                |             |                                                             |          |             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Contraction of the local division of the l | _ |            |



### Improved Material Support

•Materials models targeting composite and turbomachinery applications have been

Added. They enable advanced ply modelling and failure

- \*MAT\_ENHANCED\_COMPOSITE\_DAMAGE
- \*MAT\_LAMINATED\_COMPOOSITE\_FABRIC
- \*MAT\_COMPOSITE\_FAILURE\_SHELL\_MODEL
- \*MAT\_COMPOSITE\_FAILURE\_SOLID\_MODEL
- \*MAT\_ORTHOTROPIC\_SIMPLIFIED\_DAMAGE

| 1            | _SDYN/                                                       | A External Model - MAT                                                                                                                                                                                                                                                                                                            |  |
|--------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2            | *MAT                                                         | ELASTIC                                                                                                                                                                                                                                                                                                                           |  |
| 7            | *MAT                                                         | ORTHOTROPIC ELASTIC                                                                                                                                                                                                                                                                                                               |  |
| 2            | *MAT                                                         | ANISOTROPIC ELASTIC                                                                                                                                                                                                                                                                                                               |  |
| 2            | *MAT                                                         | PLASTIC KINEMATIC                                                                                                                                                                                                                                                                                                                 |  |
| 2            | *MAT                                                         | BLATZ-KO RUBBER                                                                                                                                                                                                                                                                                                                   |  |
| 2            | *MAT                                                         | HIGH EXPLOSIVE BURN                                                                                                                                                                                                                                                                                                               |  |
| 2            | *MAT                                                         | NULL                                                                                                                                                                                                                                                                                                                              |  |
| 2            | *MAT                                                         | JOHNSON COOK                                                                                                                                                                                                                                                                                                                      |  |
| ~            | *MAT                                                         | POWER LAW PLASTICITY                                                                                                                                                                                                                                                                                                              |  |
| 2            | *MAT                                                         | DIECEWISE LINEAR DIASTICITY                                                                                                                                                                                                                                                                                                       |  |
| 2            | *MAT                                                         | ENHANCED COMPOSITE DAMAGE                                                                                                                                                                                                                                                                                                         |  |
|              | *MAT                                                         | LAMINATED COMPOSITE FABRIC                                                                                                                                                                                                                                                                                                        |  |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                   |  |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                   |  |
|              | *MAT                                                         | CRUSHABLE FOAM<br>OGDEN RUBBER                                                                                                                                                                                                                                                                                                    |  |
|              | *MAT<br>*MAT<br>*MAT                                         | CRUSHABLE FOAM<br>OGDEN RUBBER<br>SIMPLIFIED JOHNSON COOK                                                                                                                                                                                                                                                                         |  |
|              | *MAT<br>*MAT<br>*MAT<br>*MAT                                 | CRUSHABLE FOAM<br>OGDEN RUBBER<br>SIMPLIFIED JOHNSON COOK<br>MODIFIED PIECEWISE LINEAR PLASTICITY                                                                                                                                                                                                                                 |  |
| NNNN         | *MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT                         | CRUSHABLE FOAM<br>OGDEN RUBBER<br>SIMPLIFIED JOHNSON COOK<br>MODIFIED PIECEWISE LINEAR PLASTICITY<br>SIMPLIFIED RUBBER/FOAM                                                                                                                                                                                                       |  |
| NNNNNN       | *MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT                 | CRUSHABLE FOAM<br>OGDEN RUBBER<br>SIMPLIFIED JOHNSON COOK<br>MODIFIED PIECEWISE LINEAR PLASTICITY<br>SIMPLIFIED RUBBER/FOAM<br>BILKHU/DUBOIS FOAM                                                                                                                                                                                 |  |
| NNNNNNN      | *MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT                 | CROSHABLE FOAM<br>OGDEN RUBBER<br>SIMPLIFIED JOHNSON COOK<br>MODIFIED PIECEWISE LINEAR PLASTICITY<br>SIMPLIFIED RUBBER/FOAM<br>BILKHU/DUBOIS FOAM<br>FABRIC                                                                                                                                                                       |  |
|              | *MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT         | CROSHABLE FOAM<br>OGDEN RUBBER<br>SIMPLIFIED JOHNSON COOK<br>MODIFIED PIECEWISE LINEAR PLASTICITY<br>SIMPLIFIED RUBBER/FOAM<br>BILKHU/DUBOIS FOAM<br>FABRIC<br>ADD EROSION                                                                                                                                                        |  |
|              | *MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT | CRUSHABLE FOAM<br>OGDEN RUBBER<br>SIMPLIFIED JOHNSON COOK<br>MODIFIED PIECEWISE LINEAR PLASTICITY<br>SIMPLIFIED RUBBER/FOAM<br>BILKHU/DUBOIS FOAM<br>FABRIC<br>ADD EROSION<br>ADD DAMAGE GISSMO<br>CENTERAL VISCOLLACTIC                                                                                                          |  |
| NNNNNNNNNN   | *MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT | CRUSHABLE FOAM<br>OGDEN RUBBER<br>SIMPLIFIED JOHNSON COOK<br>MODIFIED PIECEWISE LINEAR PLASTICITY<br>SIMPLIFIED RUBBER/FOAM<br>BILKHU/DUBOIS FOAM<br>FABRIC<br>ADD EROSION<br>ADD DAMAGE GISSMO<br><u>CENERAL VISCOELASTIC</u><br>COMPOSITE FAILURE CUEL MODEL                                                                    |  |
| NNNNNNNNN    | *MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT | CRUSHABLE FOAM<br>OGDEN RUBBER<br>SIMPLIFIED JOHNSON COOK<br>MODIFIED PIECEWISE LINEAR PLASTICITY<br>SIMPLIFIED RUBBER/FOAM<br>BILKHU/DUBOIS FOAM<br>FABRIC<br>ADD EROSION<br>ADD DAMAGE GISSMO<br><u>CENERAL VISCOELASTIC</u><br>COMPOSITE FAILURE SHELL MODEL<br>COMPOSITE FAILURE SHELL MODEL                                  |  |
| NNN NNNNNNNN | *MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT<br>*MAT | CROSHABLE FOAM<br>OGDEN RUBBER<br>SIMPLIFIED JOHNSON COOK<br>MODIFIED PIECEWISE LINEAR PLASTICITY<br>SIMPLIFIED RUBBER/FOAM<br>BILKHU/DUBOIS FOAM<br>FABRIC<br>ADD EROSION<br>ADD DAMAGE GISSMO<br><u>CENERAL VISCOELASTIC</u><br>COMPOSITE FAILURE SHELL MODEL<br>COMPOSITE FAILURE SOLID MODEL<br>COMPOSITE FAILURE SOLID MODEL |  |



#### **ALE Improvements**



## Improved Support for ALE

- Field added to specify reference pressure under analysis settings
- Option to use newer coupling algorithm (ALE\_Structured\_FSI) for S-ALE
- Ability to define coupling stiffness using tabular data

| Lagrange Bodies         Scoping Method       Geometry Selection         Geometry       1 Body         ALE Bodies       Scoping Method         Geometry       1 Body         ALE Bodies       1 Body         Scoping Method       Geometry Selection         Geometry       1 Body         Definition       Fluid Structure Interaction Type         Fluid Structure Coupling Method       Program Controlled         Coupling Direction       Constrained Lagrange in Solid<br>ALE Structured FSI         Number of Coupling Points       2         Lagrange Normals Point Toward ALE Fluids       Yes         Leakage Control       None         Stiffness Type       Tabular         Stiffness Load Curve       Tabular         Minimum Volume Fraction to Activate Coupling       0.5         Friction       0         Birth Time       0 s         Death Time       1E+20 s | etails of "Coupling"                         | ▼ ‡ 🗆 ×                       |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|--|--|--|--|--|
| Scoping Method       Geometry Selection         Geometry       1 Body         ALE Bodies       Scoping Method         Geometry       1 Body         Definition       1 Body         Fluid Structure Interaction Type       Program Controlled         Fluid Structure Coupling Method       Program Controlled         Coupling Direction       Constrained Lagrange in Solid ALE Structured FSI         Number of Coupling Points       2         Lagrange Normals Point Toward ALE Fluids       Yes         Leakage Control       None         Stiffness Type       Tabular         Stiffness Load Curve       Tabular Data         Minimum Volume Fraction to Activate Coupling       0.5         Friction       0         Birth Time       0 s         Death Time       1E+20 s                                                                                             | Lagrange Bodies                              |                               |  |  |  |  |  |
| Geometry       1 Body         ALE Bodies       Scoping Method         Scoping Method       Geometry Selection         Geometry       1 Body         Definition       Fluid Structure Interaction Type         Fluid Structure Coupling Method       Program Controlled         Coupling Direction       Constrained Lagrange in Solid ALE Structured FSI         Number of Coupling Points       2         Lagrange Normals Point Toward ALE Fluids       Yes         Leakage Control       None         Stiffness Type       Tabular         Stiffness Load Curve       Tabular Data         Minimum Volume Fraction to Activate Coupling       0.5         Friction       0         Birth Time       0 s         Death Time       1E+20 s                                                                                                                                     | Scoping Method                               | Geometry Selection            |  |  |  |  |  |
| ALE Bodies         Scoping Method       Geometry Selection         Geometry       1 Body         Definition       Fluid Structure Interaction Type       Program Controlled         Fluid Structure Coupling Method       Program Controlled       ▼         Coupling Direction       Constrained Lagrange in Solid ALE Structured FSI       Number of Coupling Points       2         Lagrange Normals Point Toward ALE Fluids       Yes       Leakage Control       None         Stiffness Type       Tabular       Stiffness Load Curve       Tabular Data         Minimum Volume Fraction to Activate Coupling       0.5       §         Friction       0       \$         Birth Time       0 s       \$         Death Time       1E+20 s       \$                                                                                                                          | Geometry                                     | 1 Body                        |  |  |  |  |  |
| Scoping Method     Geometry Selection       Geometry     1 Body       Definition     Fluid Structure Interaction Type     Program Controlled       Fluid Structure Coupling Method     Program Controlled       Coupling Direction     Constrained Lagrange in Solid<br>ALE Structured FSI       Number of Coupling Points     2       Lagrange Normals Point Toward ALE Fluids     Yes       Leakage Control     None       Stiffness Type     Tabular       Stiffness Load Curve     Tabular Data       Minimum Volume Fraction to Activate Coupling     0.5       Friction     0       Birth Time     0 s       Death Time     1E+20 s                                                                                                                                                                                                                                       | ALE Bodies                                   |                               |  |  |  |  |  |
| Geometry     1 Body       Definition     Fluid Structure Interaction Type     Program Controlled       Fluid Structure Coupling Method     Program Controlled       Coupling Direction     Constrained Lagrange in Solid<br>ALE Structured FSI       Number of Coupling Points     2       Lagrange Normals Point Toward ALE Fluids     Yes       Leakage Control     None       Stiffness Type     Tabular       Stiffness Load Curve     Tabular Data       Minimum Volume Fraction to Activate Coupling     0.5       Friction     0       Birth Time     0 s       Death Time     1E+20 s                                                                                                                                                                                                                                                                                   | Scoping Method                               | Geometry Selection            |  |  |  |  |  |
| Definition         Fluid Structure Interaction Type       Program Controlled         Fluid Structure Coupling Method       Program Controlled         Coupling Direction       Constrained Lagrange in Solid<br>ALE Structured FSI         Number of Coupling Points       2         Lagrange Normals Point Toward ALE Fluids       Yes         Leakage Control       None         Stiffness Type       Tabular         Stiffness Load Curve       Tabular Data         Minimum Volume Fraction to Activate Coupling       0.5         Friction       0         Birth Time       0 s         Death Time       1E+20 s                                                                                                                                                                                                                                                           | Geometry                                     | 1 Body                        |  |  |  |  |  |
| Fluid Structure Interaction Type       Program Controlled         Fluid Structure Coupling Method       Program Controlled         Coupling Direction       Constrained Lagrange in Solid         Number of Coupling Points       2         Lagrange Normals Point Toward ALE Fluids       Yes         Leakage Control       None         Stiffness Type       Tabular         Stiffness Load Curve       Tabular Data         Minimum Volume Fraction to Activate Coupling       0.5         Friction       0         Birth Time       0 s         Death Time       1E+20 s                                                                                                                                                                                                                                                                                                    | Definition                                   |                               |  |  |  |  |  |
| Fluid Structure Coupling Method     Program Controlled       Coupling Direction     Constrained Lagrange in Solid<br>ALE Structured FSI       Number of Coupling Points     2       Lagrange Normals Point Toward ALE Fluids     Yes       Leakage Control     None       Stiffness Type     Tabular       Stiffness Load Curve     Tabular Data       Minimum Volume Fraction to Activate Coupling     0.5       Friction     0       Birth Time     0 s       Death Time     1E+20 s                                                                                                                                                                                                                                                                                                                                                                                          | Fluid Structure Interaction Type             | Program Controlled 🔹          |  |  |  |  |  |
| Coupling Direction     Constrained Lagrange in Solid<br>ALE Structured FSI       Number of Coupling Points     2       Lagrange Normals Point Toward ALE Fluids     Yes       Leakage Control     None       Stiffness Type     Tabular       Stiffness Load Curve     Tabular Data       Minimum Volume Fraction to Activate Coupling     0.5       Friction     0       Birth Time     0 s       Death Time     1E+20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fluid Structure Coupling Method              | Program Controlled            |  |  |  |  |  |
| Number of Coupling Points     2       Lagrange Normals Point Toward ALE Fluids     Yes       Leakage Control     None       Stiffness Type     Tabular       Stiffness Load Curve     Tabular Data       Minimum Volume Fraction to Activate Coupling     0.5       Friction     0       Birth Time     0 s       Death Time     1E+20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coupling Direction                           | Constrained Lagrange in Solid |  |  |  |  |  |
| Lagrange Normals Point Toward ALE Fluids     Yes       Leakage Control     None       Stiffness Type     Tabular       Stiffness Load Curve     Tabular Data       Minimum Volume Fraction to Activate Coupling     0.5       Friction     0       Birth Time     0 s       Death Time     1E+20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of Coupling Points                    | 2                             |  |  |  |  |  |
| Leakage Control     None       Stiffness Type     Tabular       Stiffness Load Curve     Tabular Data       Minimum Volume Fraction to Activate Coupling     0.5       Friction     0       Birth Time     0 s       Death Time     1E+20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lagrange Normals Point Toward ALE Fluids     | Yes                           |  |  |  |  |  |
| Stiffness Type     Tabular       Stiffness Load Curve     Tabular Data       Minimum Volume Fraction to Activate Coupling     0.5       Friction     0       Birth Time     0 s       Death Time     1E+20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Leakage Control                              | None                          |  |  |  |  |  |
| Stiffness Load Curve     Tabular Data       Minimum Volume Fraction to Activate Coupling     0.5       Friction     0       Birth Time     0 s       Death Time     1E+20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stiffness Type                               | Tabular                       |  |  |  |  |  |
| Minimum Volume Fraction to Activate Coupling     0.5       Friction     0       Birth Time     0 s       Death Time     1E+20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stiffness Load Curve                         | Tabular Data                  |  |  |  |  |  |
| Friction         0           Birth Time         0 s           Death Time         1E+20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum Volume Fraction to Activate Coupling | 0.5                           |  |  |  |  |  |
| Birth Time         0 s           Death Time         1E+20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Friction                                     | 0                             |  |  |  |  |  |
| Death Time 1E+20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Birth Time                                   | 0 s                           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Death Time                                   | 1E+20 s                       |  |  |  |  |  |

| ALE Controls                    |                               |
|---------------------------------|-------------------------------|
| Continuum Treatment             | Use Alternate Advection Logic |
| Cycles Between Advection        | 1                             |
| Advection Method                | Donor Cell + Half Index Shift |
| Simple Average Weighting Factor | -1                            |
| Volume Weighting Factor         | 0                             |
| Isoparametric Weighting Factor  | 0                             |
| Equipotential Weighting Factor  | 0                             |
| Equilibrium Weighting Factor    | 0                             |
| Advection Factor                | 0                             |
| Start                           | 0 s                           |
| End                             | 1E+20 s                       |
| Reference Pressure              | 0 Pa                          |
| Advanced                        |                               |
| Output Controls                 |                               |





#### Structured FSI Coupling Method

The new structured FSI coupling method can now be used for S-ALE simulations

| Details of "Coupling"                    | ▼ ‡ □ ×              |  |  |  |  |  |
|------------------------------------------|----------------------|--|--|--|--|--|
| Lagrange Bodies                          |                      |  |  |  |  |  |
| Scoping Method                           | Geometry Selection   |  |  |  |  |  |
| Geometry                                 |                      |  |  |  |  |  |
| ALE Bodies                               |                      |  |  |  |  |  |
| Scoping Method                           | Geometry Selection   |  |  |  |  |  |
| Geometry                                 |                      |  |  |  |  |  |
| Definition                               |                      |  |  |  |  |  |
| Fluid Structure Interaction Type         | Program Controlled 🔹 |  |  |  |  |  |
| Fluid Structure Coupling Method          | Program Controlled   |  |  |  |  |  |
| Coupling Direction                       | ALE Stuctured FSI    |  |  |  |  |  |
| Number of Coupling Points                | 2                    |  |  |  |  |  |
| Lagrange Normals Point Toward ALE Fluids | Yes                  |  |  |  |  |  |

| 1 | *ALE_STRUCTURED_FSI |        |       |        |        |        |        |        |  |  |  |
|---|---------------------|--------|-------|--------|--------|--------|--------|--------|--|--|--|
| 1 | \$ slave            | master | sstyp | mstyp  | unused | unused | unused | mcoup  |  |  |  |
|   | 1                   | 45     | 1     | 1      |        |        |        | -2     |  |  |  |
| 1 | \$ start            | end    | pfac  | unused | unused | flip   | unused | unused |  |  |  |
|   | 0                   | 1E+20  | 0.1   |        |        | 0      |        |        |  |  |  |



#### **SPH Improvements**



#### Adaptive Solid to SPH (Material Assignment)

- SPH particles existing inside the solid element are inactive initially and become active when the solid element reaches failure criteria defined by the material of the solid part.
  - The SPH particles are created inside the solver.

If the user want the generated particles (after failure) to have different material, he/she should set material Assignment to User Defined. In the field Material, we can access all materials defined in the model.



| Details of "Adaptive Solid To SPH"        | ····································· |  |  |  |  |
|-------------------------------------------|---------------------------------------|--|--|--|--|
| Geometry                                  |                                       |  |  |  |  |
| Scoping Method                            | Geometry Selection                    |  |  |  |  |
| Geometry                                  | 1 Body                                |  |  |  |  |
| Definition                                |                                       |  |  |  |  |
| Per Element Direction number of particles | 1                                     |  |  |  |  |
| Coupling Type                             | Debris                                |  |  |  |  |
| Coupling Start                            | From Beginning                        |  |  |  |  |
| Material Assignment                       | User Defined                          |  |  |  |  |
| Material                                  | Structural Steel 🔹                    |  |  |  |  |
| Section SPH controls                      |                                       |  |  |  |  |
| Smoothing Length Constant                 | 1.2                                   |  |  |  |  |
| Maximum Scale Factor                      | 2                                     |  |  |  |  |
| Minimum Scale Factor                      | 0.2                                   |  |  |  |  |



#### Adaptive Solid to SPH (Material Assignment)

- The Adaptive Solid To SPH particles are created inside the solver
- The SPH part is not visible on mechanical and cannot be scoped in contact.
- A child object under the corresponding adaptive solid to SPH called Contact SPH to Target Bodies can be added.
- The user should set the target Bodies and the contact properties.
- The user can run the contact algorithm in MPP configuration by setting the processing type to MPP in analysis settings
- The user can add erosion to contact by Eroding property to Yes

|   | ⊡√ੴ Mesh<br>□                    | ng<br><b>)</b><br>nditior<br>Setting | is<br>35  |         |        |   |                |
|---|----------------------------------|--------------------------------------|-----------|---------|--------|---|----------------|
|   | Adaptive                         |                                      | Insert    |         |        | • | 1              |
|   | ⊡ <mark>γ</mark> ⊡ Solution<br>⊕ | * <sub>0</sub>                       | Suppress  |         |        |   |                |
|   |                                  |                                      | Duplicate |         |        |   |                |
| D | etails of "Adaptive Solid To     |                                      | Сору      |         |        |   | <b>→</b> ┦ □ × |
| Ξ | Geometry                         | ~                                    | Cut       |         |        |   |                |
|   | Scoping Method                   |                                      | Cut       |         |        |   | 0              |
|   | Geometry                         | ها                                   | Copy To ( | lipboa  | ard    |   |                |
| Ξ | Definition                       | ×                                    | Delete    |         |        |   |                |
|   | Per Element Direction num        | Th                                   | Dename    |         | E2     |   |                |
|   | Coupling Type                    | <u>a</u> ro                          | Rename    |         | 12     |   |                |
|   | Coupling Start                   |                                      | Group     |         | Ctrl+G |   |                |
|   | Material Assignment              |                                      | Group Sir | nilar O | bjects |   |                |
|   | Material                         |                                      | Add Cont  | act     |        |   | <b>•</b>       |
| - | Section SPH controls             | _                                    | Add Com   | ucc     |        |   |                |
|   | Smoothing Length Consta          | nt                                   |           | 1.2     |        |   |                |
|   | Maximum Scale Factor             |                                      |           | 2       |        |   |                |
|   | Minimum Scale Factor             |                                      |           | 0.2     |        |   |                |

| Oetails of "Contact SPH to Target Bodies"       | ▼ ‡ □ ×                      |  |  |  |
|-------------------------------------------------|------------------------------|--|--|--|
| Target Bodies                                   |                              |  |  |  |
| Scoping Method                                  | Geometry Selection           |  |  |  |
| Geometry                                        |                              |  |  |  |
| Definition                                      |                              |  |  |  |
| Formulation                                     | ERODING_NODES_TO_SURFACE_MPP |  |  |  |
| Eroding                                         | Yes                          |  |  |  |
| MPP                                             | Yes 💌                        |  |  |  |
| Sort Frequency                                  | 100                          |  |  |  |
| Contact ID                                      | 179                          |  |  |  |
| Common Controls                                 |                              |  |  |  |
| Birth Time                                      | 0 s                          |  |  |  |
| Death Time                                      | 0 s                          |  |  |  |
| Viscous Damping Coefficient                     | 10                           |  |  |  |
| Contact Penalty Scale Factor                    | 1E-12                        |  |  |  |
| Target Penalty Scale Factor                     | 1E-12                        |  |  |  |
| Advanced Controls                               |                              |  |  |  |
| Optional Thickness for Contact Surface          | 0 m                          |  |  |  |
| Optional Thickness for Target Surface           | 0 m                          |  |  |  |
| Soft Constraint Formulation                     | Program Controlled           |  |  |  |
| Soft Constraint Scale Factor                    | 0.1                          |  |  |  |
| Depth                                           | 5                            |  |  |  |
| Eroding Controls                                |                              |  |  |  |
| Symmetry Plane Option                           | Program Controlled           |  |  |  |
| Erosion Interior Node Option Program Controlled |                              |  |  |  |
| Solid Elements Treatment Program Controlled     |                              |  |  |  |



#### **New Feature:**

Fully automated element embedding workflow for modeling intersecting components of elements

#### Value Provided:

- New workflow greatly reduces the model preparation time and computational costs
- Integrated seamlessly with the released Reinforcing capability
- Powerful usability and accuracy enhancements by harvesting all embedded element features



# Direct Element Embedding Workflow

- The connections between two intersecting elements or element components (embedded and base elements) can now be automatically established with a new Direct Embedding procedure. A new command **EEMBED** is introduced
- Structural beams/links and thermal links are supported for embedded members
- Extensive applications: electronics reliability, composites, biomedical







## Advantages of Direct Element Embedding

- Can be seamlessly integrated with current Reinforcing workflow (see example on the right)
- Allows both embedded members and base materials to be modeled with standard structural or thermal elements
- Accounts for the actual cross-section geometry of the embedded members in embedded / base element connections.
- Improves the modeling accuracy (for instance, inclusion of bending and torsional stiffness for embedded members is now feasible using standard beam elements)
- Effectively eliminates the solution sensitivity with respect to the mesh density.



SOLID185 – Concrete Encasement Reinforcing - Rebars Direct embedding – Steel Section

#### **New Feature:**

**Co-Simulation of Aqwa, Rigid Dynamics** and AeroDyn for the offshore wind turbine

#### **Value Provided:**

Enables user to simulate the coupling system
 of hydrodynamics, mooring dynamics,
 aerodynamics, and structural dynamics of the
 offshore floating wind turbine, providing the
 transient responses and stresses on the
 floating wind turbine system under various sea
 and wind conditions



#### Floating Wind Turbine Co-simulation Workflow

 Provides an integrated procedure for the time domain hydrodynamics, mooring dynamics, aerodynamics and structural dynamics response analysis for floating wind turbine systems



### Pre and Post Processing of Co-simulation in Workbench

#### • Installation:

- AqwaCosimulation Extension pre-installed with Workbench
- Manually loaded from Extension > Manage Extensions
- Inputs:
  - Model geometry and mooring definition
  - Ocean environment settings
  - Blade and tower sectional aerodynamic data
  - Generator torque vs. Speed curve
- Results:
  - Time history of responses
  - Flexible structural analysis





#### **New Feature:**

#### **Structural Optimization**

#### Value Provided:

• New optimization methods and constraints open up more possibilities for customers to create optimized designs.



## New Features & Capabilities

- New manufacturing constraint
- Design constraint



#### Topology Optimization - Housing





- Topology Optimization delivers the lightest solution. However, designs are almost systematically perforated which makes them inappropriate for some contexts.
- For example, consider a housing that is clamped on another component and contains a liquid.
- Would Topology optimization be capable to deliver a watertight design?
- Where should the envelop be optimally located?













# Topology Optimization - Housing



 $\begin{cases}
|\min_{\Omega} compliance| \\
|vol < 30\%
\end{cases}$ 

 $\begin{cases} \min_{\Omega} compliance \\ vol < 30\% \\ | + housing (3 faces to enclose) \end{cases}$ 



 $\begin{cases} \min_{\Omega} compliance \\ vol < 30\% \\ +housing (5 faces to enclose) \\ \lfloor +2\text{-sided z-dir pullout} \end{cases}$ 















• Given a working domain and a stamping direction, can topology optimization give any guidance to sketch plate-like design?



| D | etails of "Manufacturing Const | raint 2" coordooccoordoo |         | oooooooooo 🗢 🕂 🗖 🗙 |                  |
|---|--------------------------------|--------------------------|---------|--------------------|------------------|
| - | Scope                          |                          |         |                    |                  |
|   | Scoping Method                 | Optimization Regio       | n       | About the cot i    |                  |
|   | Optimization Region Selection  | Optimization Regio       | n       | About the set-t    | , h              |
| - | Definition                     | 1                        |         | 1)create a pull-   | out manuf.       |
|   | Туре                           | Manufacturing Con        | straint | constraint         |                  |
|   | Subtype                        | Pull Out Direction       |         | 2) select the « s  | tamning » ontion |
|   | Suppressed                     | No                       |         |                    |                  |
|   | Pull Out Option                | Stamping                 |         | 3)define the pu    | flout direction  |
| - | Location and Orientation       |                          |         | corresponding t    | to your stamping |
|   | Coordinate System              | Global Coordinate        | System  | direction          |                  |
|   | Axis                           | Z Axis                   |         |                    |                  |
|   | Direction                      | Both Directions          |         |                    |                  |

# $\begin{cases} |\min_{\Omega} compliance| \\ |vol < 40\% \end{cases}$

By nature, Topology Optimization is not capable to deliver plate design, it rather favors massive design.





# No-hole (iso-topology)



- In casting process it may be requested to have the simplest design as possible in a bid to ease the filling process. Any perforation or hole is somehow an obstacle that makes the filling stage more delicate and energyconsuming.
- The so-called « no-hole » feature aims to fulfill this manufacturing constraint.

| D       | etails of "Manufacturing Constr      | raint"                   |       |  |  |  |
|---------|--------------------------------------|--------------------------|-------|--|--|--|
| - Scope |                                      |                          |       |  |  |  |
|         | Scoping Method                       | Optimization Region      |       |  |  |  |
|         | <b>Optimization Region Selection</b> | Optimization Region      |       |  |  |  |
| -       | Definition                           |                          |       |  |  |  |
|         | Туре                                 | Manufacturing Constraint | Abou  |  |  |  |
|         | Subtype                              | Pull Out Direction       | ADOU  |  |  |  |
|         | Suppressed                           | No                       | 1)cre |  |  |  |
|         | Pull Out Option                      | No-Hole                  | const |  |  |  |
| -       | Location and Orientation             |                          |       |  |  |  |
|         | Coordinate System                    | Global Coordinate System | ontio |  |  |  |
|         | Axis                                 | Y Axis                   | υριιο |  |  |  |
|         | Direction                            | Both Directions          |       |  |  |  |

| About the set-up           |  |  |  |
|----------------------------|--|--|--|
| 1)create a pull-out manuf. |  |  |  |
| constraint                 |  |  |  |
| 2)select the « no-hole »   |  |  |  |
| option                     |  |  |  |
| •                          |  |  |  |



Known limitation: The no-hole constraint can be sometimes slighlty violated.



# Topology Optimization

Design constraint with Level-Set

- Design constraints are now available in Level-set based Topology Optimization:
  - cyclic symetry,
  - plane symetry
  - and pattern repetition.

| Aechanical setup |  |
|------------------|--|
| with 3 loadsteps |  |



Mechanical setup with 2 loadsteps

 $\left(\min_{\Omega}\sum_{k}compliance_{k}\right)$  $mass \leq 35\%$ +4th y-cyclic +1-sided y-pullout

 $\left(\min_{\Omega}\sum_{k} complianc\right)$ 

 $mass \leq 35$ 

+4th







| Details of "Design Constraint" 🗢 🖣 🗖 🗙 |                               |                          |  |  |  |
|----------------------------------------|-------------------------------|--------------------------|--|--|--|
| Ξ                                      | Scope                         |                          |  |  |  |
|                                        | Scoping Method                | Optimization Region      |  |  |  |
|                                        | Optimization Region Selection | Optimization Region      |  |  |  |
| -                                      | Definition                    |                          |  |  |  |
|                                        | Туре                          | Design Constraint        |  |  |  |
|                                        | Subtype                       | Cyclic Repetition        |  |  |  |
|                                        | Suppressed                    | No                       |  |  |  |
| -                                      | Location and Orientation      |                          |  |  |  |
|                                        | Number of Sectors             | 4                        |  |  |  |
|                                        | Coordinate System             | Global Coordinate System |  |  |  |
|                                        | Axis                          | X Axis                   |  |  |  |



 $\begin{cases} \min_{\Omega} \sum_{k} compliance_{k} \\ mass \leq 35\% \\ +4th y-cyclic \end{cases}$ 













# Min Gap

- This new manufacturing constraint aims to keep a minimum distance between features. It is motivated by the casting process to increase the life cycle of the mold.
- This constraint is qualitative. The formulation is based on an approximation that aims to limit the amount of material within multiple test regions. This capability should be used in combination with max-thickness.

#### Recommandation : GapSize $\leq 2.maxThick$

| Details of "Manufacturing Constraint" 👻 🗖 🗖 🗙 |                               |                     |          |  |  |  |
|-----------------------------------------------|-------------------------------|---------------------|----------|--|--|--|
| -                                             | Scope                         |                     |          |  |  |  |
|                                               | Scoping Method                | Optimization Regio  | n        |  |  |  |
|                                               | Optimization Region Selection | Optimization Region |          |  |  |  |
| -                                             | Definition                    | ^                   |          |  |  |  |
|                                               | Туре                          | Manufacturing Con   | istraint |  |  |  |
|                                               | Subtype                       | Member Size         |          |  |  |  |
|                                               | Suppressed                    | No                  |          |  |  |  |
| -                                             | Member Size                   |                     |          |  |  |  |
|                                               | Minimum                       | Free                |          |  |  |  |
|                                               | Maximum                       | Manual              |          |  |  |  |
|                                               | Max Size                      | 1.e-002 m           |          |  |  |  |
|                                               | Gap Size                      | Manual              |          |  |  |  |
|                                               | Value                         | 1.e-002 m           |          |  |  |  |
|                                               | 1                             |                     |          |  |  |  |




## Local Strain Energy





- LSE is exposed as a new stress-norm alongside vonMises or Maximum Principal Stress.
- In some context LSE is equivalent to compliance.
- LSE permits to control the strain-energy of the body
  of interest

| Details of "Response Constr | 2"                    | ▼ ‡ 🗆 × |
|-----------------------------|-----------------------|---------|
| - Scope                     |                       |         |
| Scoping Method              | Optimization Region   |         |
| Optimization Region Sele    | Optimization Region 2 |         |
| - Definition                |                       |         |
| Туре                        | Response Constraint   |         |
| Response                    | Global Stress         |         |
| Stress Type                 | Local Strain Energy   |         |
| Maximum                     | 15 1                  |         |
| Environment Selection       | All Static Structural |         |
| Suppressed                  | No                    |         |

 $\begin{cases} \min_{\{\Omega_1,\Omega_2,\Omega_3\}} complia \\ |vol < |vol$ 



For some context, the compliance is the strain energy of the whole model ...

 $\begin{cases} \min_{(\Omega_{1},\Omega_{2},\Omega_{3})} LSE \\ |vol < 50\% \end{cases}$ 



... so minimizing the total LSE (ie sum over all bodies) sometimes gives similar result to compliance.

 $\begin{cases} \min_{(\Omega_1, \Omega_2)} LSE \\ |vol < 50\%| \end{cases}$ 



By contrast, minimizing partial LSE (eg sum over 2 out of 3 bodies) can return non-intuitive design.









## Improvement & Corrections

- Stress criterion
  - All elements lying in the Exclusion-Region are also excluded from the stress-control
  - A more accurate computation of the shape derivative has been implemented
  - Those changes may slightly affect the results with Level-set and Shape Optimization
- UDC modal: « Robust Frequency »
  - Consolidation of the feature in order to better manage the context of multiple modes
- Max member-size
  - A new numerical scheme has been devised permiting to better access the maximum thickness in the context of Shape optimization and in Discovery Live

## Stress in prescribed-disp context











"Robust frequency" capability to manage multiple modes context



## 新科益工程仿真中心



咨询邮箱 : ansyssupport@cadit.com.cn 公司网址 : http://www.cadit.com.cn